• 全国中文核心期刊
  • 中国科技核心期刊
  • 美国工程索引(EI)收录期刊
  • Scopus数据库收录期刊
CUI Hao, XIAO Yang, SUN Zeng-chun, WANG Cheng-gui, LIANG Fang, LIU Han-long. Elastoplastic constitutive model for biocemented sands[J]. Chinese Journal of Geotechnical Engineering, 2022, 44(3): 474-482. DOI: 10.11779/CJGE202203009
Citation: CUI Hao, XIAO Yang, SUN Zeng-chun, WANG Cheng-gui, LIANG Fang, LIU Han-long. Elastoplastic constitutive model for biocemented sands[J]. Chinese Journal of Geotechnical Engineering, 2022, 44(3): 474-482. DOI: 10.11779/CJGE202203009

Elastoplastic constitutive model for biocemented sands

More Information
  • Received Date: April 29, 2021
  • Available Online: September 22, 2022
  • The microbial-induced calcite precipitation (MICP) is a new method for reinforcing geotechnical materials with environmentally friendly bacteria. The test results show that the stiffness, strength and dilatancy of the MICP-treated sands are enhanced, while the compressibility is reduced. In view of the mechanical properties and deformation characteristics of the MICP-treated sands, a state-dependent elastoplastic constitutive model for the MICP-treated sands with non-associated flow rule is established in the framework of critical state soil mechanics theory. In the new cementation degradation rule, the cementation degradation rate is related to the accumulation of plastic strain and the confining pressure. Then, the drained triaxial tests on the MICP-treated sands are simulated by the proposed model. The results show that the proposed model can well simulate the stress-strain relationship and dilatancy behavior.
  • [1]
    何稼, 楚剑, 刘汉龙, 等. 微生物岩土技术的研究进展[J]. 岩土工程学报, 2016, 38(4): 643–653. https://www.cnki.com.cn/Article/CJFDTOTAL-YTGC201604010.htm

    HE Jia, CHU Jian, LIU Han-long, et al. Research advances in biogeotechnologies[J]. Chinese Journal of Geotechnical Engineering, 2016, 38(4): 643–653. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YTGC201604010.htm
    [2]
    刘汉龙, 肖鹏, 肖杨, 等. 微生物岩土技术及其应用研究新进展[J]. 土木与环境工程学报, 2019, 41(1): 1–14. https://www.cnki.com.cn/Article/CJFDTOTAL-JIAN201901001.htm

    LIU Han-long, XIAO Peng, XIAO Yang, et al. State-of- the-art review of biogeotechnology and its engineering applications[J]. Journal of Civil and Environmental Engineering, 2019, 41(1): 1–14. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-JIAN201901001.htm
    [3]
    程晓辉, 麻强, 杨钻, 等. 微生物灌浆加固液化砂土地基的动力反应研究[J]. 岩土工程学报, 2013, 35(8): 1486–1495. https://www.cnki.com.cn/Article/CJFDTOTAL-YTGC201308017.htm

    CHENG Xiao-hui, MA Qiang, YANG Zuan, et al. Dynamic response of liquefiable sand foundation improved by bio-grouting[J]. Chinese Journal of Geotechnical Engineering, 2013, 35(8): 1486–1495. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YTGC201308017.htm
    [4]
    张鑫磊, 陈育民, 张喆, 等. 微生物灌浆加固可液化钙质砂地基的振动台试验研究[J]. 岩土工程学报, 2020, 42(6): 1023–1031. https://www.cnki.com.cn/Article/CJFDTOTAL-YTGC202006007.htm

    ZHANG Xin-lei, CHEN Yu-min, ZHANG Zhe, et al. Performance evaluation of liquefaction resistance of a MICP-treated calcareous sandy foundation using shake table tests[J]. Chinese Journal of Geotechnical Engineering, 2020, 42(6): 1023–1031. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YTGC202006007.htm
    [5]
    马瑞男, 郭红仙, 程晓辉, 等. 微生物拌和加固钙质砂渗透特性试验研究[J]. 岩土力学, 2018, 39(增刊2): 217–223. https://www.cnki.com.cn/Article/CJFDTOTAL-YTLX2018S2031.htm

    MA Rui-nan, GUO Hong-xian, CHENG Xiao-hui, et al. A Permeability experiment study of calcareous sand treated by microbially induced carbonate precipitation using mixing methods[J]. Rock and Soil Mechanics, 2018, 39(S2): 217–223. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YTLX2018S2031.htm
    [6]
    李贤, 汪时机, 何丙辉, 等. 土体适用MICP技术的渗透特性条件研究[J]. 岩土力学, 2019, 40(8): 2956–2964, 2974. https://www.cnki.com.cn/Article/CJFDTOTAL-YTLX201908010.htm

    LI Xian, WANG Shi-ji, HE Bing-hui, et al. Permeability condition of soil suitable for MICP method[J]. Rock and Soil Mechanics, 2019, 40(8): 2956–2964, 2974. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YTLX201908010.htm
    [7]
    黄明, 张瑾璇, 靳贵晓, 等. 残积土MICP灌浆结石体冻融损伤的核磁共振特性试验研究[J]. 岩石力学与工程学报, 2018, 37(12): 2846–2855. https://www.cnki.com.cn/Article/CJFDTOTAL-YSLX201812020.htm

    HUANG Ming, ZHANG Jin-xuan, JIN Gui-xiao, et al. Magnetic resonance image experiments on the damage feature of microbial induced calcite precipitated residual soil during freezing-thawing cycles[J]. Chinese Journal of Rock Mechanics and Engineering, 2018, 37(12): 2846–2855. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YSLX201812020.htm
    [8]
    刘士雨, 俞缙, 韩亮, 等. 三合土表面微生物诱导碳酸钙沉淀耐水性试验研究[J]. 岩石力学与工程学报, 2019, 38(8): 1718–1728. https://www.cnki.com.cn/Article/CJFDTOTAL-YSLX201908022.htm

    LIU Shi-yu, YU Jin, HAN Liang, et al. Experimental study on water resistance of tabia surface with microbially induced carbonate precipitation[J]. Chinese Journal of Rock Mechanics and Engineering, 2019, 38(8): 1718–1728. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YSLX201908022.htm
    [9]
    欧孝夺, 莫鹏, 江杰, 等. 生石灰与微生物共同固化过湿性铝尾黏土试验研究[J]. 岩土工程学报, 2020, 42(4): 624–631. https://www.cnki.com.cn/Article/CJFDTOTAL-YTGC202004007.htm

    OU Xiao-duo, MO Peng, JIANG Jie, et al. Experimental study on solidification of bauxite tailing clay with quicklime and microorganism[J]. Chinese Journal of Geotechnical Engineering, 2020, 42(4): 624–631. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YTGC202004007.htm
    [10]
    桂跃, 吴承坤, 刘颖伸, 等. 利用微生物技术改良泥炭土工程性质试验研究[J]. 岩土工程学报, 2020, 42(2): 269–278. https://www.cnki.com.cn/Article/CJFDTOTAL-YTGC202002011.htm

    GUI Yue, WU Chng-kun, LIU Ying-shen, et al. Improving engineering properties of peaty soil by biogeotechnology[J]. Chinese Journal of Geotechnical Engineering, 2020, 42(2): 269–278. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YTGC202002011.htm
    [11]
    彭劼, 温智力, 刘志明, 等. 微生物诱导碳酸钙沉积加固有机质黏土的试验研究[J]. 岩土工程学报, 2019, 41(4): 733–740. https://www.cnki.com.cn/Article/CJFDTOTAL-YTGC201904022.htm

    PENG Jie, WEN Zhi-li, LIU Zhi-ming, et al. Experimental research on MICP-treated organic clay[J]. Chinese Journal of Geotechnical Engineering, 2019, 41(4): 733–740. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YTGC201904022.htm
    [12]
    李驰, 王硕, 王燕星, 等. 沙漠微生物矿化覆膜及其稳定性的现场试验研究[J]. 岩土力学, 2019, 40(4): 1291–1298. https://www.cnki.com.cn/Article/CJFDTOTAL-YTLX201904007.htm

    LI Chi, WANG Shuo, WANG Yan-xing, et al. Field experimental study on stability of bio-mineralization crust in the desert[J]. Rock and Soil Mechanics, 2019, 40(4): 1291–1298. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YTLX201904007.htm
    [13]
    支永艳, 邓华锋, 肖瑶, 等. 微生物灌浆加固裂隙岩体的渗流特性分析[J]. 岩土力学, 2019, 40(增刊1): 237–244. https://www.cnki.com.cn/Article/CJFDTOTAL-YTLX2019S1036.htm

    ZHI Yong-hua, DENG Hua-feng, XIAO Yao, et al. Analysis of seepage characteristics of fractured rock mass reinforced by microbial grouting[J]. Rock and Soil Mechanics, 2019, 40(S1): 237–244. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YTLX2019S1036.htm
    [14]
    FENG K, MONTOYA B M. Influence of confinement and cementation level on the behavior of microbial-induced calcite precipitated sands under monotonic drained loading[J]. Journal of Geotechnical and Geoenvironmental Engineering, 2016, 142(1): 04015057. doi: 10.1061/(ASCE)GT.1943-5606.0001379
    [15]
    LIU L, LIU H, STUEDLEIN A W, et al. Strength, stiffness, and microstructure characteristics of biocemented calcareous sand[J]. Can Geotech J, 2019, 56(10): 1502–1513. doi: 10.1139/cgj-2018-0007
    [16]
    MONTOYA B M, DEJONG J T. Stress-strain behavior of sands cemented by microbially induced calcite precipitation[J]. Journal of Geotechnical and Geoenvironmental Engineering, 2015, 141(6): 04015019. doi: 10.1061/(ASCE)GT.1943-5606.0001302
    [17]
    CUI M J, ZHENG J J, ZHANG R J, et al. Influence of cementation level on the strength behaviour of bio-cemented sand[J]. Acta Geotechnica, 2017, 12(5): 971–986. doi: 10.1007/s11440-017-0574-9
    [18]
    方祥位, 李晶鑫, 李捷, 等. 珊瑚砂微生物固化体三轴压缩试验及损伤本构模型研究[J]. 岩土力学, 2018, 39(增刊1): 1–8. https://www.cnki.com.cn/Article/CJFDTOTAL-YTLX2018S1002.htm

    FANG Xiang-wei, LI Jing-xin, LI Jie, et al. Study of triaxial compression test and damage constitutive model of biocemented coral sand columns [J]. Rock and Soil Mechanics, 2018, 39(S1): 1–8. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YTLX2018S1002.htm
    [19]
    GAI X R, SANCHEZ M. An elastoplastic mechanical constitutive model for microbially mediated cemented soils[J]. Acta Geotechnica, 2019, 14(3): 709–726. doi: 10.1007/s11440-018-0721-y
    [20]
    XIAO P, LIU H, STUEDLEIN A W, et al. Effect of relative density and bio-cementation on the cyclic response of calcareous sand[J]. Can Geotech J, 2019, 56(12): 1849–1862. doi: 10.1139/cgj-2018-0573
    [21]
    O'DONNELL T S, KAVAZANJIAN J E. Stiffness and dilatancy improvements in uncemented sands treated through micp[J]. Journal of Geotechnical and Geoenvironmental Engineering, 2015, 141(11): 02815004. doi: 10.1061/(ASCE)GT.1943-5606.0001407
    [22]
    LIN H, SULEIMAN M T, BROWN D G, et al. Mechanical behavior of sands treated by microbially induced carbonate precipitation[J]. Journal of Geotechnical and Geo- environmental Engineering, 2016, 142(2): 13.
    [23]
    XIAO Y, WANG Y, DESAI C S, et al. Strength and deformation responses of biocemented sands using a temperature-controlled method[J]. International Journal of Geomechanics, 2019, 19(11): 04019120. doi: 10.1061/(ASCE)GM.1943-5622.0001497
    [24]
    CUI M J, ZHENG J J, CHU J, et al. Bio-mediated calcium carbonate precipitation and its effect on the shear behaviour of calcareous sand[J]. Acta Geotechnica, 2021, 16(5): 1377–1389. doi: 10.1007/s11440-020-01099-0
    [25]
    YAO Y P, LIU L, LUO T, et al. Unified hardening (UH) model for clays and sands[J]. Computers and Geotechnics, 2019, 110: 326–343. doi: 10.1016/j.compgeo.2019.02.024
    [26]
    BAUDET B, STALLEBRASS S. A constitutive model for structured clays[J]. Géotechnique, 2004, 54(4): 269–278. doi: 10.1680/geot.2004.54.4.269
    [27]
    CHEN Q S, INDRARATNA B, CARTER J, et al. A theoretical and experimental study on the behaviour of lignosulfonate-treated sandy silt[J]. Computers and Geotechnics, 2014, 61: 316–327. doi: 10.1016/j.compgeo.2014.06.010
    [28]
    LI X S, DAFALIAS Y, WANG Z L. State-dependant dilatancy in critical-state constitutive modelling of sand[J]. Can Geotech J, 1999, 36(4): 599–611. doi: 10.1139/t99-029
    [29]
    SHEN J, CHIU C F, NG C W W, et al. A state-dependent critical state model for methane hydrate-bearing sand[J]. Computers and Geotechnics, 2016, 75: 1–11. doi: 10.1016/j.compgeo.2016.01.013
    [30]
    LIU J, WANG S, JIANG M J, et al. A state-dependent hypoplastic model for methane hydrate-bearing sands[J]. Acta Geotechnica, 2021, 16(1): 77–91. doi: 10.1007/s11440-020-01076-7
    [31]
    NG C W W, BAGHBANREZVAN S, KADLICEK T, et al. A state-dependent constitutive model for methane hydrate-bearing sediments inside the stability region[J]. Géotechnique, 2020, 70(12): 1094–1108. doi: 10.1680/jgeot.18.P.143
    [32]
    BEEN K, JEFFERIES M G. A state parameter for sands[J]. Géotechnique, 1985, 35(2): 99–112. doi: 10.1680/geot.1985.35.2.99
    [33]
    LI X S, DAFALIAS Y F. Dilatancy for cohesionless soils[J]. Géotechnique, 2000, 50(4): 449–460. doi: 10.1680/geot.2000.50.4.449
    [34]
    XIAO Y, LIU H, CHEN Y, et al. Bounding surface model for rockfill materials dependent on density and pressure under triaxial stress conditions[J]. Journal of Engineering Mechanics, 2014, 140(4): 04014002. doi: 10.1061/(ASCE)EM.1943-7889.0000702
    [35]
    孙增春, 汪成贵, 刘汉龙, 等. 粗粒土边界面塑性模型及其积分算法[J]. 岩土力学, 2020, 41(12): 3957–3967. https://www.cnki.com.cn/Article/CJFDTOTAL-YTLX202012015.htm

    SUN Zeng-chun, WANG Cheng-gui, LIU Han-long, et al. Bounding surface plasticity model for granular soil and its integration algorithm[J]. Rock and Soil Mechanics, 2020, 41(12): 3957–3967. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YTLX202012015.htm
  • Cited by

    Periodical cited type(9)

    1. 宋泽宇,蒲力,马云飞. 含有机质黏土全吸力范围内土-水特征曲线试验研究. 水力发电. 2024(10): 114-118 .
    2. 童富果,蔡文婧,薛松,刘刚,李东奇. 基于孔隙分形特征的水泥基毛细吸力预测模型. 水利水电科技进展. 2024(06): 27-33 .
    3. 幸锦雯,孙文,余光耀,徐娜,麻建宏. 基于核磁共振及分形理论预测非饱和土石混合体SWCC. 水利水电技术(中英文). 2023(10): 180-189 .
    4. 王海曼,倪万魁. 不同干密度压实黄土的饱和/非饱和渗透系数预测模型. 岩土力学. 2022(03): 729-736 .
    5. 魏小棋,陈盼. 压实延安黄土土-水特性及快速测定方法探讨. 土工基础. 2022(03): 446-450 .
    6. 王海曼,倪万魁,刘魁. 延安压实黄土土-水特征曲线的快速预测方法. 岩土力学. 2022(07): 1845-1853 .
    7. 刘莉,姜大伟,于明波,颜荣涛,于海浩,陈波. 千枚岩全风化土的持水特性研究. 河南科技大学学报(自然科学版). 2022(06): 53-58+8 .
    8. 高世壮,薛善彬,张鹏,李春云,王俊洁. 高温作用对应变硬化水泥基复合材料吸水性能及微结构演化特征的影响. 复合材料学报. 2022(10): 4778-4787 .
    9. 马冬冬,马芹永,黄坤,张蓉蓉. 基于NMR的地聚合物水泥土孔隙结构与动态力学特性研究. 岩土工程学报. 2021(03): 572-578 . 本站查看

    Other cited types(14)

Catalog

    Article views PDF downloads Cited by(23)
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return