• 全国中文核心期刊
  • 中国科技核心期刊
  • 美国工程索引(EI)收录期刊
  • Scopus数据库收录期刊
MA Dong-dong, MA Qin-yong, HUANG Kun, ZHANG Rong-rong. Pore structure and dynamic mechanical properties of geopolymer cement soil based on nuclear magnetic resonance technique[J]. Chinese Journal of Geotechnical Engineering, 2021, 43(3): 572-578. DOI: 10.11779/CJGE202103021
Citation: MA Dong-dong, MA Qin-yong, HUANG Kun, ZHANG Rong-rong. Pore structure and dynamic mechanical properties of geopolymer cement soil based on nuclear magnetic resonance technique[J]. Chinese Journal of Geotechnical Engineering, 2021, 43(3): 572-578. DOI: 10.11779/CJGE202103021

Pore structure and dynamic mechanical properties of geopolymer cement soil based on nuclear magnetic resonance technique

More Information
  • Received Date: May 24, 2020
  • Available Online: December 04, 2022
  • To study the effects of curing age and metakaolin (MK) content on its pore structure and dynamic mechanical properties, the dynamic uniaxial impact compression tests on the geopolymer cement soil are carried out with the help of the split Hopkinson pressure bar (SHPB) system, in addition, its pore size distribution and microstructure characteristics are studied by combining the nuclear magnetic resonance (NMR) and scanning electron microscope (SEM) analytical methods. The results indicate that with the increase of MK content, the dynamic compressive strength of the geopolymer cement soil exhibits a trend of first increase and then decrease, and the peak value appeares at 2% MK content. Moreover, its dynamic compressive strength increases slowly in the period of 7~14 curing days. The T2 distribution curves of the geopolymer cement soil present bimodal characteristics, and the main peak accounts for large proportion. The incorporation of 2% MK can effectively improve the pore distribution and promote the conversion of small pores to micro pores. With the increase of porosity, the dynamic compressive strength of the geopolymer cement soil decreases exponentially. When the MK content is 2%, the internal pores of the geopolymer cement soil are greatly reduced, and the cementitious material produced by hydration can fill pores and connect soil particles.
  • [1]
    刘勇, 李福豪, 陈健, 等. 深层搅拌水泥土基底加固层的三维随机有限元分析[J]. 岩土工程学报, 2018, 40(8): 1542-1548. https://www.cnki.com.cn/Article/CJFDTOTAL-YTGC201808025.htm

    LIU Yong, LI Fu-hao, CHEN Jian, et al. Three-dimensional random finite element analysis of cement-admixed soil slab for stabilization of foundation pits[J]. Chinese Journal of Geotechnical Engineering, 2018, 40(8): 1542-1548. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YTGC201808025.htm
    [2]
    王菲, 沈征涛, 王海玲. 水泥固化/稳定化场地污染土的效果分析[J]. 岩土工程学报, 2018, 40(3): 540-545. https://www.cnki.com.cn/Article/CJFDTOTAL-YTGC201803022.htm

    WANG Fei, SHEN Zheng-tao, WANG Hai-ling. Performances of cement-stabilised/solidified contaminated site soils[J]. Chinese Journal of Geotechnical Engineering, 2018, 40(3): 540-545. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YTGC201803022.htm
    [3]
    DENG Y F, YUE X B, LIU S Y, et al. Hydraulic conductivity of cement-stabilized marine clay with metakaolin and its correlation with pore size distribution[J]. Engineering Geology, 2015, 193: 146-152. doi: 10.1016/j.enggeo.2015.04.018
    [4]
    WANG L H, LI X Y, CHENG Y, et al. Effects of coal-bearing metakaolin on the compressive strength and permeability of cemented silty soil and mechanisms[J]. Construction and Building Materials, 2018, 186: 174-181. doi: 10.1016/j.conbuildmat.2018.07.057
    [5]
    徐菲, 蔡跃波, 钱文勋, 等. 脂肪族离子固化剂改性水泥土的机理研究[J]. 岩土工程学报, 2019, 41(9): 1679-1687. https://www.cnki.com.cn/Article/CJFDTOTAL-YTGC201909013.htm

    XU Fei, CAI Yue-bo, QIAN Wen-xun, et al. Mechanism of cemented soil modified by aliphatic ionic soil stabilizer[J]. Chinese Journal of Geotechnical Engineering, 2019, 41(9): 1679-1687. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YTGC201909013.htm
    [6]
    罗新春, 汪长安. 矿渣基地质聚合物多孔材料的制备与性能[J]. 硅酸盐学报, 2016, 44(3): 450-456. https://www.cnki.com.cn/Article/CJFDTOTAL-GXYB201603018.htm

    LUO Xin-chun, WANG Chang-an. Preparation and properties of slag-based geopolymer porous materials[J]. Journal of the Chinese Ceramic Society, 2016, 44(3): 450-456. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-GXYB201603018.htm
    [7]
    崔潮, 彭晖, 刘扬, 等. 矿渣掺量及激发剂模数对偏高岭土基地聚物常温固化的影响[J]. 建筑材料学报, 2017, 20(4): 535-542. doi: 10.3969/j.issn.1007-9629.2017.04.008

    CUI Chao, PENG Hui, LIU Yang, et al. Influence of GGBFS content and activator modulus on curing of metakaolin based geopolymer at ambient temperature[J]. Journal of Building Materials, 2017, 20(4): 535-542. (in Chinese) doi: 10.3969/j.issn.1007-9629.2017.04.008
    [8]
    邓永锋, 吴子龙, 刘松玉, 等. 地聚合物对水泥固化土强度的影响及其机理分析[J]. 岩土工程学报, 2016, 38(3): 446-453. https://www.cnki.com.cn/Article/CJFDTOTAL-YTGC201603010.htm

    DENG Yong-feng, WU Zi-long, LIU Song-yu, et al. Influence of geopolymer on strength of cement-stabilized soils and its mechanism[J]. Chinese Journal of Geotechnical Engineering, 2016, 38(3): 446-453. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YTGC201603010.htm
    [9]
    WU Z L, DENG Y F, LIU S Y, et al. Strength and micro-structure evolution of compacted soils modifified by admixtures of cement and metakaolin[J]. Applied Clay Science, 2016(127/128): 44-51.
    [10]
    高常辉, 马芹永. 水泥砂浆固化粉质黏土分离式Hopkinson压杆试验与分析[J]. 复合材料学报, 2018, 35(6): 1629-1635. https://www.cnki.com.cn/Article/CJFDTOTAL-FUHE201806033.htm

    GAO Chang-hui, MA Qin-yong. Analysis of silty clay stabilized by cement mortar based on split Hopkinson pressure bar experiment[J]. Acta Materiae Compositae Sinica, 2018, 35(6): 1629-1635.(in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-FUHE201806033.htm
    [11]
    MA Q Y, GAO C H. Effect of basalt fiber on the dynamic mechanical properties of cement-soil in SHPB test[J]. Journal of Materials in Civil Engineering, 2018, 30(8): 04018185.
    [12]
    土工试验方法标准:GB50123—2019[S]. 2019.

    Standard for Geotechnical Testing Method: GB50123—2019[S]. 2019. (in Chinese)
    [13]
    洪宏, 马芹永, 高常辉, 等. 地聚合物水泥土最佳拌合方法的试验与探讨[J]. 安徽理工大学学报(自然科学版), 2018, 38(6): 59-64. https://www.cnki.com.cn/Article/CJFDTOTAL-HLGB201806011.htm

    HONG Hong, MA Qin-yong, GAO Chang-hui, et al. Experiment with the optimal mixing methods of geopolymer cement soil and its analysis[J]. Journal of Anhui University of Science and Technology (Natural Science), 2018, 38(6): 59-64. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-HLGB201806011.htm
    [14]
    MA Q Y, CAO Z M. Experimental study on fractal characteristics and energy dissipation of stabilized soil based on SHPB test[J]. Journal of Materials in Civil Engineering, 2019, 31(11): 04019264.
    [15]
    建筑地基处理技术规范:JGJ79—2012[S]. 2012.

    Technical Code for Ground Treatment of Buildings: JGJ79—2012[S]. 2012. (in Chinese)
    [16]
    陶高梁, 陈银, 袁波, 等. 基于NMR技术及分形理论预测SWRC[J]. 岩土工程学报, 2018, 40(8): 1466-1472. https://www.cnki.com.cn/Article/CJFDTOTAL-YTGC201808014.htm

    TAO Gao-liang, CHEN Yin, YUAN Bo, et al. Predicting soil-water retention curve based on NMR technology and fractal theory[J]. Chinese Journal of Geotechnical Engineering, 2018, 40(8): 1466-1472. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YTGC201808014.htm
    [17]
    HOPRIBULSUK S, RACHAN R, RAKSACHON Y. Role of fly ash on strength and microstructure development in blended concrete stabilized silty clay[J]. Soil and Foundations, 2009, 49(1): 85-98.
    [18]
    查甫生, 刘晶晶, 许龙, 等. 水泥−粉煤灰固化/稳定重金属污染土的电阻率特性试验研究[J]. 岩土力学, 2019, 40(12): 4573-4580. https://www.cnki.com.cn/Article/CJFDTOTAL-YTLX201912003.htm

    ZHA Fu-sheng, LIU Jing-jing, XU Long, et al. Electrical resistivity of heavy metal contaminated soils solidified/stabilized with cement-fly ash[J]. Rock and Soil Mechanics, 2019, 40(12): 4573-4580. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YTLX201912003.htm
  • Related Articles

    [1]JI En-yue, CHEN Sheng-shui, ZHU Jun-gao, FU Zhong-zhi. Experimental research on tensile strength of gravelly soil under different gravel contents[J]. Chinese Journal of Geotechnical Engineering, 2019, 41(7): 1339-1344. DOI: 10.11779/CJGE201907019
    [2]LING Hua, WANG Wei, WANG Fang, FU Hua, HAN Hua-qiang. Experimental study on hydraulic fracture of gravelly soil core[J]. Chinese Journal of Geotechnical Engineering, 2018, 40(8): 1444-1448. DOI: 10.11779/CJGE201808009
    [3]CHEN Qun, DUAN Bo. Filter criteria for gravelly clayey soils with cracks[J]. Chinese Journal of Geotechnical Engineering, 2014, 36(10): 1802-1807. DOI: 10.11779/CJGE201410006
    [4]CHEN Liang, ZHANG Hong-yu, LEI Wen, LIANG Yue, JI Chun-bo, WANG Chen-long. Piping and non-uniform permeability development of cohesionless soils[J]. Chinese Journal of Geotechnical Engineering, 2012, 34(8): 1432-1439.
    [5]CHU Cheng-fu, LI Xiao-chun, LU Li-hao, XI Pei-sheng. Load bearing behavior of pile tip post-grouting super-long large-diameter bored piles in cohesionless soil[J]. Chinese Journal of Geotechnical Engineering, 2011, 33(sup2): 388-391.
    [6]Lü Xi-lin, HUANG Mao-song, QIAN Jian-gu. Three-dimensional strength criterion for layered-anisotropic cohesionless soils[J]. Chinese Journal of Geotechnical Engineering, 2011, 33(6): 945.
    [7]ZHAO Zhengxin, CHEN Jiansheng, CHEN Liang. Application of BP neural network to assessment of noncohesive piping-typed soils[J]. Chinese Journal of Geotechnical Engineering, 2008, 30(4): 536-540.
    [8]LUO Sihai, GONG Xiaonan. Quasi-static analysis for quantitative estimation of improvement effect of cohesionless soil treated by dynamic compaction[J]. Chinese Journal of Geotechnical Engineering, 2008, 30(4): 480-486.
    [9]CAI Zhengyin, LI Xiangsong. Formation of shear band in cohesionless soils[J]. Chinese Journal of Geotechnical Engineering, 2003, 25(2): 129-134.
    [10]Liu Jie, Zhang Xiong. Study  on  Filter  Design  of  Broadly-Graded  Soil[J]. Chinese Journal of Geotechnical Engineering, 1996, 18(6): 5-13.
  • Cited by

    Periodical cited type(6)

    1. 蒋承辉. 基于BOTDA的光纤位移传感器在建筑基坑沉降监测中的实验研究. 企业科技与发展. 2025(01): 98-101 .
    2. 吴哲辉,何宁,姜彦彬,孔洋,槐伟. 堆石坝内部二维变形一体化分布式监测技术试验研究. 水利信息化. 2025(02): 56-63 .
    3. 管翰林,蒋陵,王驭扬,张灿. 基于DOFS技术的电力光缆多维度故障预警研究. 电力电子技术. 2025(05): 78-81+105 .
    4. 赵建勋,高冰,高丽娟. 分布式光纤传感技术下架空输变电线路监测. 电子设计工程. 2025(11): 72-76 .
    5. 黄惇汉. 基于分布式光纤传感技术的车辆撞击道路护栏检测研究. 运输经理世界. 2024(22): 122-124 .
    6. 马刚,艾志涛,郭承乾,李少林,陈华,周伟. 高土石坝变形监测研究进展. 水利学报. 2024(10): 1174-1186 .

    Other cited types(0)

Catalog

    Article views (334) PDF downloads (195) Cited by(6)
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return