Citation: | DONG Bo-wen, LIU Shi-yu, YU Jin, CAI Yan-yan, TU Bing-xiong. Experimental study on reinforcement of calcareous sand by targeting activation of microbes producing urease[J]. Chinese Journal of Geotechnical Engineering, 2021, 43(7): 1315-1321. DOI: 10.11779/CJGE202107017 |
[1] |
刘汉龙, 肖鹏, 肖杨, 等. MICP胶结钙质砂动力特性试验研究[J]. 岩土工程学报, 2018, 40(1): 38-45. https://www.cnki.com.cn/Article/CJFDTOTAL-YTGC201801003.htm
LIU Han-long, XIAO Peng, XIAO Yang, et al. Dynamic behaviors of MICP-treated calcareous sand in cyclic tests[J]. Chinese Journal of Geotechnical Engineering, 2018, 40(1): 38-45. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YTGC201801003.htm
|
[2] |
DEJONG J T, MORTENSEN B M, MARTINEZ B C, et al. Bio-mediated soil improvement[J]. Ecological Engineering, 2010, 36(2): 197-210. doi: 10.1016/j.ecoleng.2008.12.029
|
[3] |
BANG S, MIN S H, BANG S S. Application of microbiologically induced soil stabilization technique for dust suppression[J]. International Journal of Geoengineering, 2011, 3(2): 27-37.
|
[4] |
MARTINEZ B C, DEJONG J T, GINN T R, et al. Experimental optimization of microbial-induced carbonate precipitation for soil improvement[J]. Journal of Geotechnical and Geoenvironmental Engineering, 2013, 139(4): 587-598. doi: 10.1061/(ASCE)GT.1943-5606.0000787
|
[5] |
HAMMES F, BOON N, DE VILLIERS J, et al. Strain-specific ureolytic microbial calcium carbonate precipitation[J]. Applied and Environmental Microbiology, 2003, 69(8): 4901-4909. doi: 10.1128/AEM.69.8.4901-4909.2003
|
[6] |
GOMEZ M G, ANDERSON C M, GRADDY C M R, et al. Large-scale comparison of bioaugmentation and biostimulation approaches for biocementation of sands[J]. Journal of Geotechnical and Geoenvironmental Engineering, 2017, 143(5): 04016124. doi: 10.1061/(ASCE)GT.1943-5606.0001640
|
[7] |
GOMEZ M G, GRADDY C M R, DEJONG J T, et al. Stimulation of native microorganisms for biocementation in samples recovered from field-scale treatment depths[J]. Journal of Geotechnical and Geoenvironmental Engineering, 2018, 144(1): 04017098. doi: 10.1061/(ASCE)GT.1943-5606.0001804
|
[8] |
BURBANK M B, WEAVER T J, GREEN T L, et al. Precipitation of calcite by indigenous microorganisms to strengthen liquefiable soils[J]. Geomicrobiology Journal, 2011, 28(4): 301-312. doi: 10.1080/01490451.2010.499929
|
[9] |
张鑫磊, 陈育民, 张喆, 等. 微生物灌浆加固可液化钙质砂地基的振动台试验研究[J]. 岩土工程学报, 2020, 42(6): 1023-1031. https://www.cnki.com.cn/Article/CJFDTOTAL-YTGC202006007.htm
ZHANG Xin-lei, CHEN Yu-min, ZHANG Zhe, et al. Performance evaluation of liquefaction resistance of a MICP-treated calcareous sandy foundation using shake table tests[J]. Chinese Journal of Geotechnical Engineering, 2020, 42(6): 1023-1031. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YTGC202006007.htm
|
[10] |
李昊, 唐朝生, 刘博, 等. 模拟海水环境下MICP固化钙质砂的力学特性[J]. 岩土工程学报, 2020, 42(10): 1931-1939. https://www.cnki.com.cn/Article/CJFDTOTAL-YTGC202010025.htm
LI Hao, TANG Chao-Sheng, LIU Bo, et al. Mechanical behavior of MICP-cemented calcareous sand in simulated seawater environment[J]. Chinese Journal of Geotechnical Engineering, 2020, 42(10): 1931-1939. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YTGC202010025.htm
|
[11] |
WANG Y J, HAN X L, JIANG N J, et al. The Effect of enrichment media on the stimulation of native ureolytic bacteria in calcareous sand[J]. International Journal of Environmental Science and Technology, 2020, 17(3): 1795-1808. doi: 10.1007/s13762-019-02541-x
|
[12] |
土工试验规程:SL237—1999[S]. 1999.
Specification of Soil Test: SL237—1999[S]. 1999. (in Chinese)
|
[13] |
WHIFFIN V S. Microbial CaCO3 Precipitation for the Production of Biocement[D]. Western Australia: Murdoch University, 2004.
|
[14] |
何稼, 楚剑, 刘汉龙, 等. 微生物岩土技术的研究进展[J]. 岩土工程学报, 2016, 38(4): 643-653. https://www.cnki.com.cn/Article/CJFDTOTAL-YTGC201604010.htm
HE Jia, CHU Jian, LIU Han-long, et al. Research advances in biogeotechnologies[J]. Chinese Journal of Geotechnical Engineering, 2016, 38(4): 643-653. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YTGC201604010.htm
|
[15] |
刘汉龙, 肖鹏, 肖杨, 等. 微生物岩土技术及其应用研究新进展[J]. 土木与环境工程学报(中英文), 2019, 41(1): 1-14. https://www.cnki.com.cn/Article/CJFDTOTAL-JIAN201901001.htm
LIU Han-long, XIAO Peng, XIAO Yang, et al. State-of-the-art review of biogeotechnology and its engineering applications[J]. Journal of Civil and Environmental Engineering, 2019, 41(1): 1-14. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-JIAN201901001.htm
|
[16] |
ZHANG W C, JU Y, ZONG Y W, et al. In situ real-time study on dynamics of microbially induced calcium carbonate precipitation at a single-cell level[J]. Environmental Science and Technology, 2018, 52(16): 9266-9276.
|
[17] |
何想, 马国梁, 汪杨, 等. 基于微流控芯片技术的微生物加固可视化研究[J]. 岩土工程学报, 2020, 42(6): 1005-1012. https://www.cnki.com.cn/Article/CJFDTOTAL-YTGC202006005.htm
HE Xiang, MA Guo-liang, WANG Yang, et al. Visualization investigation of bio-cementation process based on microfluidics[J]. Chinese Journal of Geotechnical Engineering, 2020, 42(6): 1005-1012. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YTGC202006005.htm
|
[18] |
BAI Y H, CHANG Y Y, LIANG J S, et al. Treatment of groundwater containing Mn(II), Fe(II), As(III) and Sb(III) by bioaugmented quartz-sand filters[J]. Water Research, 2016, 106: 126-134.
|
[19] |
PARK S C, BAIK K S, KIM M S, et al. Nocardioides dokdonensis sp. nov., an actinomycete isolated from sand sediment[J]. International Journal of Systematic and Evolutionary Microbiology, 2008, 58(11): 2619-2263.
|
[20] |
HAFERBURG G, KLOESS G, SCHMITZ W, et al. "Ni-struvite": a new biomineral formed by a nickel resistant Streptomyces acidiscabies[J]. Chemosphere, 2008, 72(3): 517-523.
|
[1] | Experimental study on rapid prediction of rock mechanical parameters based on vibration signals of raw rock with drilling[J]. Chinese Journal of Geotechnical Engineering. DOI: 10.11779/CJGE20240378 |
[2] | ZHONG Jiazheng, WANG Shuying, FENG Zhiyao, ZHU Hanbiao. Analytical model for undrained residual shear strength of foam-conditioned coarse-grained soils in large deformation based on effective stress principle[J]. Chinese Journal of Geotechnical Engineering, 2023, 45(12): 2614-2623. DOI: 10.11779/CJGE20230180 |
[3] | WANG Yu-jie, SHE Lei, ZHAO Yu-fei, CAO Rui-lang. Experimental study on measurement of rock strength parameters based on digital drilling technology[J]. Chinese Journal of Geotechnical Engineering, 2020, 42(9): 1659-1668. DOI: 10.11779/CJGE202009010 |
[4] | YANG Ren-shu, CHEN Jun, FANG Shi-zheng, HOU Li-dong, CHEN Shuai-zhi. Inversion analysis of M-C criterion parameters of rock based on uniaxial shearing failure[J]. Chinese Journal of Geotechnical Engineering, 2017, 39(7): 1351-1356. DOI: 10.11779/CJGE201707023 |
[5] | SUN Li-qiang, LU Jiang-xin, LI Heng, YAN Shu-wang, JIA Xiao, HAN Sheng-zhang. Influence of water and salt contents on strength of artificially frozen soils[J]. Chinese Journal of Geotechnical Engineering, 2015, 37(zk2): 27-31. DOI: 10.11779/CJGE2015S2006 |
[6] | CAI Zheng-yin, WU Zhi-qiang, HUANG Ying-hao, CAO Yong-yong, WEI Yan-bing. Influence of water and salt contents on strength of frozen soils[J]. Chinese Journal of Geotechnical Engineering, 2014, 36(9): 1580-1586. DOI: 10.11779/CJGE201409002 |
[7] | LEI Guo-hui, CHEN Jing-jing. Tribological explanation of effective stress controlling shear strength of saturated geomaterials[J]. Chinese Journal of Geotechnical Engineering, 2011, 33(10): 1517-1525. |
[8] | BING Hui, HE Ping. Influence of freeze-thaw cycles on physical and mechanical properties of salty soil[J]. Chinese Journal of Geotechnical Engineering, 2009, 31(12): 1958-1962. |
[9] | LI Haipeng, LIN Chuannian, ZHANG Junbing, ZHU Yuanlin. Uniaxial compressive strength of saturated frozen clay at constant strain rate[J]. Chinese Journal of Geotechnical Engineering, 2004, 26(1): 105-109. |
[10] | MIAO Tiande, MU Qingsong, LIU Zhongyu, MA Chongwu. Effective stress and shear strength of unsaturated soil with low water content[J]. Chinese Journal of Geotechnical Engineering, 2001, 23(4): 393-396. |