• 全国中文核心期刊
  • 中国科技核心期刊
  • 美国工程索引(EI)收录期刊
  • Scopus数据库收录期刊
ZHONG Jiazheng, WANG Shuying, FENG Zhiyao, ZHU Hanbiao. Analytical model for undrained residual shear strength of foam-conditioned coarse-grained soils in large deformation based on effective stress principle[J]. Chinese Journal of Geotechnical Engineering, 2023, 45(12): 2614-2623. DOI: 10.11779/CJGE20230180
Citation: ZHONG Jiazheng, WANG Shuying, FENG Zhiyao, ZHU Hanbiao. Analytical model for undrained residual shear strength of foam-conditioned coarse-grained soils in large deformation based on effective stress principle[J]. Chinese Journal of Geotechnical Engineering, 2023, 45(12): 2614-2623. DOI: 10.11779/CJGE20230180

Analytical model for undrained residual shear strength of foam-conditioned coarse-grained soils in large deformation based on effective stress principle

More Information
  • Received Date: February 28, 2023
  • Available Online: July 25, 2023
  • Foam is usually used in soil conditioning of earth pressure balance shield tunnelling. The smooth muck discharge and chamber pressure transmission require foam-conditioned coarse-grained soils with suitable flowability to avoid face instability and excessive ground deformation. Inspired by undrained compression and shear mechanism, an analytical model is proposed for the undrained residual shear strength of foam-conditioned coarse-grained soils after large deformation under pressure. Firstly, the effective stress in one-dimensional undrained compression is obtained based on the ideal gas law and the hyperbolic equation for stress and strain. Then, the shear-induced excess pore pressure is calculated, and the relation between the residual shear strength and the vertical effective stress is derived. Furthermore, the analytical model for the residual shear strength dependent on shear rate is obtained. A series of undrained pressurized vane shear tests are performed to verify the analytical model. The average error between the analytical and experimental results is about 10%. It is proved that the analytical model is reliable in determining the residual shear strength under chamber pressure. Finally, the discussion of influencing factors manifests that the residual strength is raised by increasing the vertical total stress but reduced by increasing the foam injection ratio (FIR). It also revealed that the yield stress and plastic viscosity in the residual state are positively correlated with the vertical total stress but negatively correlated with FIR.
  • [1]
    张淑朝, 贺少辉, 朱自鹏, 等. 兰州富水砂卵石层土压平衡盾构渣土改良研究[J]. 岩土力学, 2017, 38(增刊2): 279-286. doi: 10.16285/j.rsm.2017.S2.039

    ZHANG Shuchao, HE Shaohui, ZHU Zipeng, et al. Research on soil conditioning for earth pressure balance shield tunneling in Lanzhou sandy pebble strata with rich water[J]. Rock and Soil Mechanics, 2017, 38(S2): 279-286. (in Chinese) doi: 10.16285/j.rsm.2017.S2.039
    [2]
    王树英, 刘朋飞, 胡钦鑫, 等. 盾构隧道渣土改良理论与技术研究综述[J]. 中国公路学报, 2020, 33(5): 8-34. https://www.cnki.com.cn/Article/CJFDTOTAL-ZGGL202005002.htm

    WANG Shuying, LIU Pengfei, HU Qinxin, et al. State-of-the-art on theories and technologies of soil conditioning for shield tunneling[J]. China Journal of Highway and Transport, 2020, 33(5): 8-34. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-ZGGL202005002.htm
    [3]
    BEZUIJEN A. Foam used during EPB tunnelling in saturated sand, parameters determining foam consumption[C]//World Tunnel Congress 2012. Bangkok, 2012.
    [4]
    姜厚停, 龚秋明, 杜修力. 卵石地层土压平衡盾构施工土体改良试验研究[J]. 岩土工程学报, 2013, 35(2): 284-292. http://www.cgejournal.com/cn/article/id/14963

    JIANG Houting, GONG Qiuming, DU Xiuli. Experimental study on soil conditioning in cobble layer by use of earth pressure balanced machine[J]. Chinese Journal of Geotechnical Engineering, 2013, 35(2): 284-292. (in Chinese) http://www.cgejournal.com/cn/article/id/14963
    [5]
    GALLI M, THEWES M. Rheological characterisation of foam-conditioned sands in EPB tunneling[J]. International Journal of Civil Engineering, 2019, 17(1): 145-160. doi: 10.1007/s40999-018-0316-x
    [6]
    钟嘉政, 王树英, 刘朋飞, 等. 泡沫改良砾砂渣土力学行为与流变模型研究[J]. 哈尔滨工业大学学报, 2021, 53(11): 84-92. https://www.cnki.com.cn/Article/CJFDTOTAL-HEBX202111011.htm

    ZHONG Jiazheng, WANG Shuying, LIU Pengfei, et al. Mechanical behavior and rheology model of foam- conditioned gravelly sand in EPB shield tunneling[J]. Journal of Harbin Institute of Technology, 2021, 53(11): 84-92. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-HEBX202111011.htm
    [7]
    孟庆琳, 屈福政, 李守巨. 土体旋转流变仪开发与土压平衡盾构改性土体塑性流动特性实验[J]. 岩土工程学报, 2011, 33(10): 1642-1648. http://www.cgejournal.com/cn/article/id/14215

    MENG Qinglin, QU Fuzheng, LI Shouju. Development of soil rotational rheometer and experiment on plastic flow characteristics of conditioned soil in earth pressure balance shield[J]. Chinese Journal of Geotechnical Engineering, 2011, 33(10): 1642-1648. (in Chinese) http://www.cgejournal.com/cn/article/id/14215
    [8]
    ZHONG J Z, WANG S Y, LIU P F, et al. Investigation of the dynamic characteristics of muck during EPB shield tunnelling in a full chamber model using a CFD method[J]. KSCE Journal of Civil Engineering, 2022, 26(9): 4103-4116. doi: 10.1007/s12205-022-1300-1
    [9]
    HU W, ROSTAMI J. Evaluating rheology of conditioned soil using commercially available surfactants (foam) for simulation of material flow through EPB machine[J]. Tunnelling and Underground Space Technology, 2021, 112: 103881. doi: 10.1016/j.tust.2021.103881
    [10]
    MORI L S, MOONEY M, CHA M S. Characterizing the influence of stress on foam conditioned sand for EPB tunneling[J]. Tunnelling and Underground Space Technology, 2018, 71: 454-465.
    [11]
    ZHONG J Z, WANG S Y, QU T M. Undrained vane shear strength of sand-foam mixtures subjected to different shear rates[J]. Journal of Rock Mechanics and Geotechnical Engineering, 2023, 15(6): 1591-1602.
    [12]
    WANG Haibo, WANG Shuying, ZHONG Jiazheng, et al. Undrained compressibility characteristics and pore pressure calculation model of foam-conditioned sand[J]. Tunnelling and Underground Space Technology. 2021, 118: 104161.
    [13]
    WU Y L, NAZEM A, MENG F Y, et al. Experimental study on the stability of foam-conditioned sand under pressure in the EPBM chamber[J]. Tunnelling and Underground Space Technology, 2020, 106: 103590.
    [14]
    YANG Guangchang, BAI Bing, LIU Yang, et al. Constitutive modeling for undrained shear behavior of gassy sand considering energy dissipation at the mesoscopic level[J]. Ocean Engineering, 2021, 219: 108307.
    [15]
    LIU Kan, XUE Jianfeng, YANG Min. Deformation behaviour of geotechnical materials with gas bubbles and time dependent compressible organic matter[J]. Engineering Geology. 2016, 213: 98-106.
    [16]
    曹文贵, 李鹏, 张超, 等. 土的初始和再压缩曲线分析模型[J]. 岩石力学与工程学报, 2015, 34(1): 166-173. https://www.cnki.com.cn/Article/CJFDTOTAL-YSLX201501018.htm

    CAO Wengui, LI Peng, ZHANG Chao, et al. Analysis models of initial compression and recompression curves of soils[J]. Chinese Journal of Rock Mechanics and Engineering, 2015, 34(1): 166-173. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YSLX201501018.htm
    [17]
    BISHOP A W. The influence of an undrained change in stress on the pore pressure in porous media of low compressibility[J]. Géotechnique, 1973, 23(3): 435-442.
    [18]
    杨益, 李兴高, 李兴春, 等. 基于Herschel-Bulkley流变模型的盾构螺旋输送机保压性能[J]. 湖南大学学报(自然科学版), 2021, 48(11): 195-204. https://www.cnki.com.cn/Article/CJFDTOTAL-HNDX202111021.htm

    YANG Yi, LI Xinggao, LI Xingchun, et al. Pressure maintaining performance of shield screw conveyor based on herschel-bulkley rheological model[J]. Journal of Hunan University (Natural Sciences), 2021, 48(11): 195-204. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-HNDX202111021.htm
    [19]
    MESRI G, HAYAT T M. The coefficient of earth pressure at rest[J]. Canadian Geotechnical Journal, 1993, 30(4): 647-666.
  • Cited by

    Periodical cited type(11)

    1. 蔺云宏,郝云龙,李明宇,田帅,常瑞成,刘新新. 基坑开挖引起下卧地铁盾构隧道变形的统计与预测方法研究. 河南科学. 2025(03): 337-346 .
    2. 张毅. 软弱地层下的基坑支护方案比选. 山西建筑. 2024(17): 97-100 .
    3. 王伟,邓松峰. 深厚软土区邻近地铁深基坑工程关键技术研究. 江苏建筑. 2024(05): 120-126 .
    4. 刘朝阳,蒋凯,梁禹. 基于Kerr地基模型的覆土荷载引起既有装配式地铁车站沉降分析. 现代隧道技术. 2024(05): 71-78 .
    5. 贺旭. 软弱地层基坑开挖支护方案比选研究. 铁道建筑技术. 2023(05): 100-104+125 .
    6. 张继新. 浅埋扩挖隧道变形处理技术分析. 交通世界. 2023(15): 138-140 .
    7. 邓彬,张磊,郑鹏鹏,陈保国,邹顺清. 深基坑开挖与内支撑调节对邻近沉井影响规律试验研究. 建筑科学与工程学报. 2023(05): 174-182 .
    8. 马少俊,王乔坎,苏凤阳,徐建章,郑伟,陈思源. 邻地铁盾构隧道超长基坑支护技术——以杭州大会展中心基坑工程为例. 建筑科学. 2022(05): 179-186 .
    9. 王丽萍. 水平间距对涉水隧道土体变形影响的模拟分析. 黑龙江水利科技. 2022(08): 74-76+108 .
    10. 冯文刚. 涉水隧道开挖对土体沉降影响分析. 黑龙江水利科技. 2022(08): 89-92 .
    11. 祖华. 城市地铁隧道开挖及变形控制的数值模拟研究. 山西建筑. 2022(21): 135-137 .

    Other cited types(2)

Catalog

    Article views (405) PDF downloads (119) Cited by(13)
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return