• 全国中文核心期刊
  • 中国科技核心期刊
  • 美国工程索引(EI)收录期刊
  • Scopus数据库收录期刊
FENG Duo, XU Lin-rong, CAI Yu, SU Na. Semi-analytical solution to dynamic response of transversely isotropic layered foundation-thin plate structure under moving loads[J]. Chinese Journal of Geotechnical Engineering, 2021, 43(5): 858-866. DOI: 10.11779/CJGE202105009
Citation: FENG Duo, XU Lin-rong, CAI Yu, SU Na. Semi-analytical solution to dynamic response of transversely isotropic layered foundation-thin plate structure under moving loads[J]. Chinese Journal of Geotechnical Engineering, 2021, 43(5): 858-866. DOI: 10.11779/CJGE202105009

Semi-analytical solution to dynamic response of transversely isotropic layered foundation-thin plate structure under moving loads

More Information
  • Received Date: March 26, 2020
  • Available Online: December 04, 2022
  • To study the influences of anisotropy and dynamic parameters on the response of a layered foundation-thin plate structure, from the basis of the anisotropic elastodynamics, a semi-analytical solution to the dynamic response of TI layered foundation-thin plate (infinite) model under moving rectangular harmonic loads is established by using the integral transformation and the matrix theory. The accuracy of the semi-analytical solution is verified by comparing the results of the existing examples, and then the parametric analysis of the displacement dynamic response of the plate is carried out. The results show that there is a large difference between the calculated results under the assumption of isotropy and transverse isotropy. Compared with that of the static loads, the displacement amplitude of the moving loads is asymmetric, and there is a critical velocity which makes the maximum amplitude of the loading area. The affected range of the displacement reduces with the increase of the frequency. The anisotropy of the first layer has a greater impact on the displacement than other layers. Adjusting its n value can optimize the displacement characteristics of the plate under dynamic loads.
  • [1]
    郭大智, 冯德成. 层状弹性体系力学[M]. 哈尔滨: 哈尔滨工业大学出版社, 2001.

    GUO Da-zhi, FENG De-cheng. Mechanics of Layered Elastic System[M]. Harbin: Harbin University of Technology Press, 2001. (in Chinese)
    [2]
    凌道盛, 王云龙, 赵云, 等. 飞机主起落架移动荷载作用下道基动力响应分析[J]. 岩土工程学报, 2018, 40(1): 64-73. https://www.cnki.com.cn/Article/CJFDTOTAL-YTGC201801006.htm

    LING Dao-sheng, WANG Yun-long, ZHAO Yun, et al. Dynamic response of Subgrade under moving loads of main landing gears[J]. Journal of Geotechnical Engineering, 2018, 40(1): 64-73. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YTGC201801006.htm
    [3]
    SYNGE L. Elastic waves in anisotropic media[J]. Studies in Applied Mathematics, 1956, 35(1/2/3/4): 323-334.
    [4]
    BUCHWALD V T. Rayleigh waves in transversely isotropic media[J]. The Quarterly Journal of Mechanics and Applied Mathematics, 1961(@@@3): 293-318.
    [5]
    MUKHOPADHYAY A. Stresses produced by a normal load moving over a transversely isotropic layer of ice lying on a rigid foundation[J]. Pure and Applied Geophysics, 1965, 60(1): 29-41. doi: 10.1007/BF00874804
    [6]
    BA Z, LIANG J, LEE V W, et al. A semi-analytical method for vibrations of a layered transversely isotropic ground-track system due to moving train loads[J]. Soil Dynamics & Earthquake Engineering, 2019, 121(6): 25-39.
    [7]
    Keawsawasvong SURAPARB, Senjuntichai TEERAPONG. Dynamic interaction between multiple rigid strips and transversely isotropic poroelastic layer[J]. Computers and Geotechnics, 2019, 114: 103-144.
    [8]
    BA Z, AN D. Seismic response of a 3-D canyon in a multi-layered TI half-space modeled by an indirect boundary integral equation method[J]. Geophysical Journal International, 2019, 217(3): 1949-1973. doi: 10.1093/gji/ggz122
    [9]
    RAJAPAKSE Nimal, WANG Y. Green's functions for transversely isotropic elastic half space[J]. Journal of Engineering Mechanics, 1993, 119(9): 1724-1736. doi: 10.1061/(ASCE)0733-9399(1993)119:9(1724)
    [10]
    BARROS F C P D, LUCO J E. Response of a layered viscoelastic half-space to a moving point load[J]. Wave Motion, 1994, 19(2): 189-210. doi: 10.1016/0165-2125(94)90066-3
    [11]
    薛松涛, 谢丽宇. 有阻尼横观各向同性层状场地对入射SH波的响应分析[J]. 工程力学, 2001(@@@A02): 576-580. https://cpfd.cnki.com.cn/Article/CPFDTOTAL-AGLU200110002119.htm

    XUE Song-tao, XIE Li-yu. Response analysis of damped transversely isotropic layered ground to incident SH wave[J]. Engineering Mechanics, 2001(@@@A02): 576-580. (in Chinese) https://cpfd.cnki.com.cn/Article/CPFDTOTAL-AGLU200110002119.htm
    [12]
    艾智勇, 胡亚东. 3D 横观各向同性地基非耦合解析层元[J]. 岩土工程学报, 2013, 35(增刊2): 717-720. https://www.cnki.com.cn/Article/CJFDTOTAL-YTGC2013S2131.htm

    AI Zhi-yong, HU Ya-dong. 3D transverse isotropic foundation uncoupled analytical layer element[J]. Journal of geotechnical engineering, 2013, 35(S2): 717-720. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YTGC2013S2131.htm
    [13]
    韩泽军, 林皋, 周小文, 等. 横观各向同性层状地基上埋置刚性条带基础动力刚度矩阵求解[J]. 岩土工程学报, 2016, 38(6): 1117-1124. https://www.cnki.com.cn/Article/CJFDTOTAL-YTGC201606019.htm

    HAN Ze-jun, LIN Gao, ZHOU Xiao-wen, et al. Solution of dynamic stiffness matrix of embedded rigid strip foundation on transversely isotropic layered foundation[J]. Journal of Geotechnical Engineering, 2016, 38(6): 1117-1124. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YTGC201606019.htm
    [14]
    ESKANDARI-GHADI M. A Complete solution of the wave equations for transversely isotropic media[J]. Journal of Elasticity, 2005, 81(1): 1-19. doi: 10.1007/s10659-005-9000-x
    [15]
    RAHIMIAN M, Eskandari-Ghadi M, PAK R Y, et al. Elastodynamic potential method for transversely isotropic solid[J]. J Eng Mech, 2007, 133(10): 1134-1145.
    [16]
    KHOJASTEH A, RAHIMIAN M, ESKANDARI M, et al. Asymmetric wave propagation in a transversely isotropic half-space in displacement potentials[J]. International Journal of Engineering Science, 2008, 46(7): 690-710. doi: 10.1016/j.ijengsci.2008.01.007
    [17]
    BA Zhen-ning, LIANG J, LEE V W, et al. 3D dynamic response of a multi-layered transversely isotropic half-space subjected to a moving point load along a horizontal straight line with constant speed[J]. International Journal of Solids and Structures, 2016, 100: 427-445.
    [18]
    ACHENBACH J D, KESHAVA S P, HERRMANN G. Moving load on a plate resting on an elastic half space[J]. Journal of Applied Mechanics, 1967, 34(4): 910-914. doi: 10.1115/1.3607855
    [19]
    房营光. 移动载荷作用下横观各向同性地基上无限板的动力响应[J]. 广东工学院学报, 1992(@@@2): 33-39. https://www.cnki.com.cn/Article/CJFDTOTAL-GDGX199202006.htm

    FANG Ying-guang. Dynamic response of infinite plate on transversely isotropic foundation under moving load[J]. Journal of Guangdong Institute of Technology, 1992(@@@2): 33-39. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-GDGX199202006.htm
    [20]
    王博, 张春丽, 祝彦知. 正交各向异性路基路面在移动荷载作用下的空间动力响应[J]. 郑州大学学报(工学版), 2019, 40(1): 54-58, 65. https://www.cnki.com.cn/Article/CJFDTOTAL-ZZGY201901009.htm

    WANG Bo, ZHANG Chun-li, ZHU Yan-zhi. Spatial dynamic response of orthotropic subgrade and pavement under moving load[J]. Journal of Zhengzhou University (Engineering Edition), 2019, 40(1): 54-58, 65. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-ZZGY201901009.htm
    [21]
    王春玲, 高典, 刘俊卿. 横观各向同性弹性半空间地基上四边自由各向异性矩形薄板弯曲解析解[J]. 力学季刊, 2015(@@@1): 99-108. https://www.cnki.com.cn/Article/CJFDTOTAL-SHLX201501011.htm

    WANG Chun-ling, GAO Dian, LIU Jun-qing. Analytical solution of bending of anisotropic rectangular thin plates on transversely isotropic elastic half space foundation[J]. Quarterly of Mechanics, 2015(@@@1): 99-108. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-SHLX201501011.htm
    [22]
    MUHO E V. Dynamic response of an elastic plate on a transversely isotropic viscoelastic half-space with variable with depth moduli to a rectangular moving load[J]. Soil Dynamics and Earthquake Engineering. 2020, 139: 106330.
    [23]
    EUBANKS RA, STERNBERG E. On the axisymmetric problem of elasticity theory for a medium with transverse isotropy[J]. Journal of Rational Mechanics and Analysis, 1954, 3: 89-101.
    [24]
    Michel BOUCHON. Discrete wave number representation of elastic wave fields in three-space dimensions[J]. Journal of Geophysical Research, 1979, 84(B7): 3609-3614.
    [25]
    GAU Qiang, Z Wanxie, HOWSON W P. A precise method for solving wave propagation problems in layered anisotropic media[J]. Wave Motion, 2004, 40(3): 191-207.
    [26]
    卢正, 王长柏, 付建军, 等. 交通荷载作用下公路路基工作区深度研究[J]. 岩土力学, 2013, 34(2): 316-321. https://www.cnki.com.cn/Article/CJFDTOTAL-YTLX201302004.htm

    LU Zheng, WANG Chang-bo, FU Jian-jun, et al. Research on influence depth of road subgrade induced by vehicle loads[J]. Rock and Soil Mechanics, 2013, 34(2): 316-321. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YTLX201302004.htm
    [27]
    杨广庆. 水泥改良土的动力特性试验研究[J]. 岩石力学与工程学报, 2003, 22(7): 1156-1156. https://www.cnki.com.cn/Article/CJFDTOTAL-YSLX200307021.htm

    YANG Guang-qing. Study of dynamic performance of cement-improved soil[J]. Chinese Journal of Rock Mechanics and Engineering, 2003, 22(7): 1156-1156. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YSLX200307021.htm
  • Cited by

    Periodical cited type(13)

    1. 严辉,林沛元. 深圳市岩溶地层标准贯入击数神经网络模型. 地质科技通报. 2025(02): 305-321 .
    2. 李书兆,孙国栋,申辰,李文逵,罗进华,王教龙. 基于深度学习和地震数据的海上风电场CPT预测研究. 工程地球物理学报. 2025(02): 216-226 .
    3. 崔纪飞,柏林,饶平平,康陈俊杰,张锟. 基于人工智能算法的氯盐侵蚀混凝土预测模型. 硅酸盐通报. 2024(02): 439-447 .
    4. 段文魁,王来发,晁华俊,明锋. 冻结过程中土体导热系数预测模型. 中国农村水利水电. 2024(05): 47-52 .
    5. 唐少容,殷磊,杨强,柯德秀. 微胶囊相变材料改良粉砂土的导热系数及预测模型. 中国粉体技术. 2024(03): 112-123 .
    6. 姚兆明,王洵,齐健. 土体导热系数智能方法预测及影响因素敏感性分析. 工程热物理学报. 2024(05): 1440-1449 .
    7. 邓志兴,谢康,李泰灃,王武斌,郝哲睿,李佳珅. 基于粗颗粒嵌锁点高铁级配碎石振动压实质量控制新方法. 岩土力学. 2024(06): 1835-1849 .
    8. 李林,左林龙,胡涛涛,宋博恺. 基于孔压静力触探试验测试数据的原位固结系数物理信息神经网络反演方法. 岩土力学. 2024(10): 2889-2899 .
    9. 王红旗,李栋伟,钟石明,贾志文,王泽成,陈鑫,秦子鹏. 石灰改良红黏土导热系数影响因素及模型预测. 科学技术与工程. 2023(05): 2084-2092 .
    10. 王才进,武猛,蔡国军,赵泽宁,刘松玉. 基于多元分布模型预测土体热阻系数. 岩石力学与工程学报. 2023(S1): 3674-3686 .
    11. 王健翔,任瑞琪. 电学等效的稳态平板导热系数测试实验装置. 电子制作. 2023(11): 105-109 .
    12. 王才进,武猛,杨洋,蔡国军,刘松玉,何欢,常建新. 基于生物地理优化的人工神经网络模型预测软土的固结系数. 岩土力学. 2023(10): 3022-3030 .
    13. 徐明,康雅晶,马斯斯,张鹤. 基于贝叶斯优化的XGBoost模型预测路基回弹模量. 公路交通科技. 2023(11): 51-60 .

    Other cited types(2)

Catalog

    Article views (250) PDF downloads (140) Cited by(15)
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return