• 全国中文核心期刊
  • 中国科技核心期刊
  • 美国工程索引(EI)收录期刊
  • Scopus数据库收录期刊
ZHOU Yan-guo, SHEN Tao, WANG Yue, DING Hai-jun. Post-earthquake evolution of small-strain shear stiffness at liquefiable deposit in Christchurch[J]. Chinese Journal of Geotechnical Engineering, 2020, 42(8): 1411-1417. DOI: 10.11779/CJGE202008005
Citation: ZHOU Yan-guo, SHEN Tao, WANG Yue, DING Hai-jun. Post-earthquake evolution of small-strain shear stiffness at liquefiable deposit in Christchurch[J]. Chinese Journal of Geotechnical Engineering, 2020, 42(8): 1411-1417. DOI: 10.11779/CJGE202008005

Post-earthquake evolution of small-strain shear stiffness at liquefiable deposit in Christchurch

More Information
  • Received Date: August 26, 2019
  • Available Online: December 05, 2022
  • The shear stiffness of saturated sand deposit will drop significantly under the disturbance of strong earthquake shaking (e.g., liquefaction) and then recover gradually with time. The difference between the post-earthquake field testing index and the pre-earthquake value will cause systematic error in the simplified method of liquefaction evaluation based on the field case histories. In order to evaluate this difference and propose the correction approach, the HVSR method is used to analyze the acceleration records at REHS strong motion station in Christchurch from 2010 to 2011, and to observe the time variation of the small-strain shear stiffness of the liquefiable sandy soil deposit after each strong earthquake event. It is found that the average shear stiffness of the deposit drops suddenly after earthquake and then increases logarithmically, and it will take one to two weeks to approach a relatively stable state but cannot totally recover the pre-earthquake value. By considering the combined effects of the primary consolidation and the secondary consolidation, a computational model for post-earthquake small-strain shear modulus of saturated sandy soils is proposed. The model predicts the general trend of the time-dependent development of site stiffness after the occurrence of earthquake, and can be regarded as a feasible way to correct the post-earthquake field testing index to the corresponding pre-earthquake value and help to improve the reliability of the existing simplified methods for liquefaction evaluation based on the field case histories.
  • [1]
    YOUD T L, IDRISS I M, ANDRUS R D, et al. Liquefaction resistance of soils: summary report from the 1996 NCEER and 1998 NCEER/NSF workshops on evaluation of liquefaction resistance of soils[J]. Journal of Geotechnical and Geoenvironmental Engineering, 2001, 127(10): 817-833. doi: 10.1061/(ASCE)1090-0241(2001)127:10(817)
    [2]
    李兆焱, 袁晓铭, 曹振中, 等. 基于新疆巴楚地震调查的砂土液化判别新公式[J]. 岩土工程学报, 2012, 34(3): 483-489. https://www.cnki.com.cn/Article/CJFDTOTAL-YTGC201203018.htm

    LI Zhao-yan, YUAN Xiao-ming, CAO Zhen-zhong, et al. New evaluation formula for sand liquefaction based on survey of Bachu Earthquake in Xinjiang[J]. Chinese Journal of Geotechnical Engineering, 2012, 34(3): 483-489. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YTGC201203018.htm
    [3]
    陈国兴, 李方明. 基于径向基函数神经网络模型的砂土液化概率判别方法[J]. 岩土工程学报, 2006, 28(3): 301-305. doi: 10.3321/j.issn:1000-4548.2006.03.004

    CHEN Guo-xing, LI Fang-ming. Probabilistic estimation of sand liquefaction based on neural network of radial basis function[J]. Chinese Journal of Geotechnical Engineering, 2006, 28(3): 301-305. (in Chinese) doi: 10.3321/j.issn:1000-4548.2006.03.004
    [4]
    ANDRUS R D, STOKOE K H II. Liquefaction resistance of soils from shear-wave velocity[J]. Journal of Geotechnical and Geoenvironmental Engineering, 2000, 126(11): 1015-1025. doi: 10.1061/(ASCE)1090-0241(2000)126:11(1015)
    [5]
    MITCHELL J K, SOLYMAR Z V. Time-dependent strength gain in freshly deposited or densified sand[J]. Journal of Geotechnical Engineering, 1984, 110(11): 1559-1576. doi: 10.1061/(ASCE)0733-9410(1984)110:11(1559)
    [6]
    LEON E, GASSMAN S L, TALWANI P. Accounting for soil aging when assessing liquefaction potential[J]. Journal of Geotechnical and Geoenvironmental Engineering, 2006, 132(3): 363-377. doi: 10.1061/(ASCE)1090-0241(2006)132:3(363)
    [7]
    HAYATI H, ANDRUS D. Updated liquefaction resistance correction factors for aged sands[J]. Journal of Geotechnical and Geoenvironmental Engineering, 2009, 135(11): 1683-1692. doi: 10.1061/(ASCE)GT.1943-5606.0000118
    [8]
    ANDRUS R D, HAYATI H, MOHANAN N P. Correcting liquefaction resistance for aged sands using measured to estimated velocity ratio[J]. Journal of Geotechnical and Geoenvironmental Engineering, 2009, 135(6): 735-744. doi: 10.1061/(ASCE)GT.1943-5606.0000025
    [9]
    周燕国, 丁海军, 陈云敏, 等. 基于原位测试指标的砂土时间效应定量表征初步研究[J]. 岩土工程学报, 2015, 37(11): 2000-2006. doi: 10.11779/CJGE201511009

    ZHOU Yan-guo, DING Hai-jun, CHEN Yun-min, et al. Characterization of ageing effect of sands based on field testing indices[J]. Chinese Journal of Geotechnical Engineering, 2015, 37(11): 2000-2006. (in Chinese) doi: 10.11779/CJGE201511009
    [10]
    HARDIN, B O, DRNEVICH, V P. Shear modulus and damping in soils[J]. Soil Mechanics and Foundation Engineering Div, 1972, 98(7): 667-692. doi: 10.1061/JSFEAQ.0001760
    [11]
    PAVLENKO O, IRIKURA K. Changes in shear moduli of liquefied and nonliquefied soils during the 1995 Kobe earthquake and its aftershocks at three vertical-array sites[J]. Bulletin of the Seismological Society of America, 2002, 92(5): 1952-1969. doi: 10.1785/0120010143
    [12]
    孙锐, 袁晓铭. 液化土层地震动特征分析[J]. 岩土工程学报, 2004, 26(5): 684-690. doi: 10.3321/j.issn:1000-4548.2004.05.023

    SUN Rui, YUAN Xiao-ming. Analysis on feature of surface ground motion for liquefied soil layer[J]. Chinese Journal of Geotechnical Engineering, 2004, 26(5): 684-690. (in Chinese) doi: 10.3321/j.issn:1000-4548.2004.05.023
    [13]
    孙锐, 杨洋, 陈龙伟, 等. 液化层特征量对场地卓越频率影响的理论解答[J]. 岩土工程学报, 2018, 40(5): 811-818. https://www.cnki.com.cn/Article/CJFDTOTAL-YTGC201805007.htm

    SUN Rui, YANG Yang, CHEN Long-wei, et al. Analytical solutions for changes in predominant frequency of a site based on characteristic parameters of liquefiable interlayer[J]. Chinese Journal of Geotechnical Engineering, 2018, 40(5): 811-818. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YTGC201805007.htm
    [14]
    KRAMER S L. Geotechnical Earthquake Engineering[M]. New Jersey: Prentice Hall, 1996.
    [15]
    WOTHERSPOON L M, ORENSE R P, BRADLEY B A, et al. Geotechnical Characterisation of Christchurch Strong Motion Stations, Version 2.0-October 2014[R]. Auckland: The University of Auckland, 2014.
    [16]
    CHAO K, PENG Z. Temporal changes of seismic velocity and anisotropy in the shallow crust induced by the 1999 October 22 M6.4 Chia-Yi, Taiwan earthquake[J]. Geophysical Journal of the Royal Astronomical Society, 2010, 179(3): 1800-1816.
    [17]
    PENG Z, BEN-ZION Y. Temporal changes of shallow seismic velocity around the Karadere-Düzce branch of the north Anatolian fault and strong ground motion[J]. Pure and Applied Geophysics, 2006, 163(2/3): 567-600.
    [18]
    DOWNES G, YETTON M. Pre-2010 historical seismicity near Christchurch, New Zealand: the 1869 MW 4.7~4.9 Christchurch and 1870 MW 5.6~5.8 Lake Ellesmere earthquakes[J]. New Zealand Journal of Geology and Geophysics, 2012, 55(3): 199-205. doi: 10.1080/00288306.2012.690767
    [19]
    沈涛. 砂土地震液化小应变刚度衰减与恢复规律研究[D]. 杭州: 浙江大学, 2019.

    SHEN Tao. Reduction and Recovery of Small-Strain Stiffness During Earthquake- Induced Soil Liquefaction[D]. Hangzhou: Zhejiang University, 2019. (in Chinese)
    [20]
    BAXTER C D P, MITCHELL J K. Experimental study on the aging of sands[J]. Journal of Geotechnical and Geoenvironmental Engineering, 2004, 130(10): 1051-1062. doi: 10.1061/(ASCE)1090-0241(2004)130:10(1051)
    [21]
    WANG Y H, GAO Y, LENG G. Experimental characterizations of an aging mechanism of sands[J]. Journal of Geotechnical and Geoenvironmental Engineering, 2015, 142(2): 06015016.
    [22]
    HOWIE J A, SHOZEN T, VAID Y P. Effect of ageing on stiffness of very loose sand[J]. Canadian Geotechnical Journal, 2002, 39(1): 149-156. doi: 10.1139/t01-085
    [23]
    ROBERTSON P K. Estimating in-situ soil permeability from CPT & CPTU[C]//2nd International Symposium on Cone Penetration Testing. 2010, Pomona, CA, USA.
    [24]
    MOHAMMADI S D, NIKOUDEL M R, RAHIMI H, et al. Application of the dynamic cone penetrometer (DCP) for determination of the engineering parameters of sandy soils[J]. Engineering Geology, 2008, 101(3/4): 195-203.
  • Cited by

    Periodical cited type(24)

    1. 陈琼,崔德山,张扬景皓,朱俊峰. 一种新型环剪仪的研制及其应用. 地质科技通报. 2025(01): 205-215 .
    2. 张卫雄,杨校辉,丁保艳,朱文杰,任永忠. 甘肃舟曲江顶崖滑坡堆积层剪切特性与强度参数分析. 中国地质灾害与防治学报. 2025(01): 65-72 .
    3. Yang Xue,Fasheng Miao,Yiping Wu,Linwei Li,Daniel Dias,Yang Tang. Probabilistic Assessment of Constitutive Model Parameters:Insight from a Statistical Damage Constitutive Model and a Simple Critical State Hypoplastic Model. Journal of Earth Science. 2025(02): 685-699 .
    4. 张兆雷. 滑带土力学性能及抗滑桩支护斜坡稳定分析. 黑龙江交通科技. 2025(04): 6-10 .
    5. 周葆春,王江伟,单丽霞,李颖,郎梦婷,孔令伟. 不同膨胀潜势等级的膨胀土残余强度环剪试验研究. 岩土工程学报. 2024(06): 1325-1331 . 本站查看
    6. 鄢俊彪,孔令伟,李甜果,周振华. 膨胀土残余强度的变速率效应及工程启示. 岩土工程学报. 2024(07): 1445-1452 . 本站查看
    7. 方永柱. 库岸边坡滑坡带土体特性试验研究. 陕西水利. 2024(07): 196-198 .
    8. 袁伟. 基于Midas对沿河滑坡的分析研究. 中国水运. 2024(08): 139-141 .
    9. 袁伟. 基于Midas对沿河滑坡的分析研究. 中国水运. 2024(15): 139-141 .
    10. 王家鑫,夏元友,王智德. 考虑滑面应变软化效应的边坡震后位移计算方法. 计算力学学报. 2024(06): 1029-1036 .
    11. 杜毅,晏鄂川,蔡静森,高旭,柳万里. 折线型复合式滑坡渐进破坏稳定性状态的力学判别. 岩土工程学报. 2023(06): 1151-1161 . 本站查看
    12. 苗发盛,赵帆程,吴益平,孟佳佳. 基于渗透-环剪试验的三峡库区童家坪滑坡滑带土强度特性研究. 岩土工程学报. 2023(07): 1480-1489 . 本站查看
    13. 黄淙葆,代张音,高威挺,罗庆丽. 贵州公路旁边坡滑带土抗剪强度特性研究. 地质与资源. 2023(03): 366-374 .
    14. 吴爽爽,胡新丽,孙少锐,魏继红. 间歇式滑坡变形力学机制与单体预警案例研究. 岩土力学. 2023(S1): 593-602 .
    15. 夏婷,代张音,杨银凯,赵昆. 含水率对滑带土抗剪强度的影响. 矿业工程研究. 2023(04): 60-66 .
    16. 赵帆程,苗发盛,吴益平,薛阳,孟佳佳. 不同环剪条件下三峡库区童家坪滑坡滑带土强度特性. 地质科技通报. 2022(02): 315-324 .
    17. 周洪福,张卓婷,韦玉婷. 基于滑体自重效应的滑带土强度参数取值方法. 岩石力学与工程学报. 2022(05): 1045-1053 .
    18. 唐雅婷,谭杰,李长冬,李炳辰,周文娟. 基于模型试验的动水驱动型顺层岩质滑坡启滑机制初探. 地质科技通报. 2022(06): 137-148 .
    19. 李政洋,袁伟,蒙焕伟. 高洞滑坡基本特征及形成机制分析. 中国水运(下半月). 2022(12): 109-111 .
    20. 付传林. 水库滑坡变形特征的数值分析. 水利科技与经济. 2022(12): 116-120 .
    21. 李政洋,袁伟,蒙焕伟. 高洞滑坡基本特征及形成机制分析. 中国水运. 2022(24): 109-111 .
    22. 任三绍,张永双,徐能雄,吴瑞安. 含砾滑带土残余强度与剪切面粗糙度的细观响应机制. 岩土工程学报. 2021(08): 1473-1482 . 本站查看
    23. 张晓奇,胡新丽,刘忠绪,刘畅,吴爽爽. 呷爬滑坡滑带土蠕变特性及其稳定性. 地质科技通报. 2020(06): 145-153 .
    24. 张耀文,吴迪. 黏性土的残余强度及试验方法研究. 工程技术研究. 2019(24): 147-148+226 .

    Other cited types(4)

Catalog

    Article views PDF downloads Cited by(28)
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return