• Indexed in Scopus
  • Source Journal for Chinese Scientific and Technical Papers and Citations
  • Included in A Guide to the Core Journal of China
  • Indexed in Ei Compendex
MIAO Fasheng, ZHAO Fancheng, WU Yiping, MENG Jiajia. Strength characteristics of slip zone soils of Tongjiaping landslide in Three Gorges Reservoir area based on seepage-ring shear tests[J]. Chinese Journal of Geotechnical Engineering, 2023, 45(7): 1480-1489. DOI: 10.11779/CJGE20220456
Citation: MIAO Fasheng, ZHAO Fancheng, WU Yiping, MENG Jiajia. Strength characteristics of slip zone soils of Tongjiaping landslide in Three Gorges Reservoir area based on seepage-ring shear tests[J]. Chinese Journal of Geotechnical Engineering, 2023, 45(7): 1480-1489. DOI: 10.11779/CJGE20220456

Strength characteristics of slip zone soils of Tongjiaping landslide in Three Gorges Reservoir area based on seepage-ring shear tests

More Information
  • Received Date: April 16, 2022
  • Available Online: February 19, 2023
  • The slip zone soil plays an important role in controlling the deformation and evolution of landslides. It is of great significance to study the strength characteristics of slip zone soils under different seepage conditions for the dynamic stability evaluation of reservoir accumulation landslides. In view of the current weak researches on the seepage-mechanical properties of soils of reservoir accumulation landslides, the Tongjiaping landslide slip zone soil in the Three Gorges Reservoir area is taken as an example to study the residual strength characteristics based on the ring shear tests under different seepage conditions. The ARS ring shear apparatus and the self-developed coupling devices for seepage-ring shear are employed to operate different shear modes of cyclic seepage pressure on the strength variation characteristics of the slip zone soil. The experimental results indicate that the phenomenon of 'strain softening' easily appears, meanwhile, it is promoted by the increase of seepage cycle. Additionally, the seepage cycle significantly weakens the cohesion of the slip zone soil. Moreover, under the same shear stress condition, the change trend of the shear stress under the action of seepage is basically the same, however, the residual strength is negatively correlated with the seepage pressure. The research results reveal the weakening laws of mechanical strength of the sliding zone soil under seepage cycle, which provides a basis for the studies on the mechanical mechanism of accumulation landslides under reservoir operation.
  • [1]
    TANG H M, LI C D, HU X L, et al. Evolution characteristics of the Huangtupo landslide based on in situ tunneling and monitoring[J]. Landslides, 2015, 12(3): 511-521. doi: 10.1007/s10346-014-0500-2
    [2]
    黄波林, 殷跃平, 张枝华, 等. 三峡工程库区岩溶岸坡消落带岩体劣化特征研究[J]. 岩石力学与工程学报, 2019, 38(9): 1786-1796. doi: 10.13722/j.cnki.jrme.2018.1535

    HUANG Bolin, YIN Yueping, ZHANG Zhihua, et al. Study on deterioration characteristics of shallow rock mass in water the level fluctuation zone of Karst bank slopes in Three Gorges Reservoir area[J]. Chinese Journal of Rock Mechanics and Engineering, 2019, 38(9): 1786-1796. (in Chinese) doi: 10.13722/j.cnki.jrme.2018.1535
    [3]
    殷跃平, 闫国强, 黄波林, 等. 三峡水库消落带斜坡岩体劣化过程地质强度指标研究[J]. 水利学报, 2020, 51(8): 883-896. https://www.cnki.com.cn/Article/CJFDTOTAL-SLXB202008001.htm

    YIN Yueping, YAN Guoqiang, HUANG Bolin, et al. Geological strength index of the slope rock mass deterioration process of the hydro-fluctuation belt in the Three Gorges Reservoir, China[J]. Journal of Hydraulic Engineering, 2020, 51(8): 883-896. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-SLXB202008001.htm
    [4]
    贺可强, 王荣鲁, 李新志, 等. 堆积层滑坡的地下水加卸载动力作用规律及其位移动力学预测: 以三峡库区八字门滑坡分析为例[J]. 岩石力学与工程学报, 2008, 27(8): 1644-1651. doi: 10.3321/j.issn:1000-6915.2008.08.014

    HE Keqiang, WANG Ronglu, LI Xinzhi, et al. Load-unload dynamic law of groundwater level and dynamic displacement prediction of debris landslide—a case study of bazimen landslide in Three Gorges Reservoir[J]. Chinese Journal of Rock Mechanics and Engineering, 2008, 27(8): 1644-1651. (in Chinese) doi: 10.3321/j.issn:1000-6915.2008.08.014
    [5]
    成国文, 李善涛, 李晓, 等. 万州近水平地层区堆积层滑坡成因与变形破坏特征[J]. 工程地质学报, 2008, 16(3): 17-23. https://www.cnki.com.cn/Article/CJFDTOTAL-GCDZ200803004.htm

    CHENG Guowen, LI Shantao, LI Xiao, et al. Forming causes and deformation-destruction characters of accumulative stratum landslide in horizontal stratum in Wanzhou[J]. Journal of Engineering Geology, 2008, 16(3): 17-23. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-GCDZ200803004.htm
    [6]
    许强. 滑坡的变形破坏行为与内在机理[J]. 工程地质学报, 2012, 20(2): 145-151. doi: 10.3969/j.issn.1004-9665.2012.02.001

    XU Qiang. Theoretical studies on prediction of landslides using slope deformation process data[J]. Journal of Engineering Geology, 2012, 20(2): 145-151. (in Chinese) doi: 10.3969/j.issn.1004-9665.2012.02.001
    [7]
    LIAO K, WU Y P, MIAO F S, et al. Effect of weakening of sliding zone soils in hydro-fluctuation belt on long-term reliability of reservoir landslides[J]. Bulletin of Engineering Geology and the Environment, 2021, 80(5): 3801-3815. doi: 10.1007/s10064-021-02167-9
    [8]
    田斌, 戴会超, 王世梅. 滑带土结构强度特征及其强度参数取值研究[J]. 岩石力学与工程学报, 2004, 23(17): 2887-2892. doi: 10.3321/j.issn:1000-6915.2004.17.007

    TIAN Bin, DAI Huichao, WANG Shimei. Strength chracteristics of soil in slide zone and determination of its parameters[J]. Chinese Journal of Rock Mechanics and Engineering, 2004, 23(17): 2887-2892. (in Chinese) doi: 10.3321/j.issn:1000-6915.2004.17.007
    [9]
    TAN Q W, TANG H M, FAN L, et al. In situ triaxial creep test for investigating deformational properties of gravelly sliding zone soil: example of the Huangtupo 1# landslide, China[J]. Landslides, 2018, 15(12): 2499-2508. doi: 10.1007/s10346-018-1062-5
    [10]
    龙建辉, 李同录, 雷晓锋, 等. 黄土滑坡滑带土的物理特性研究[J]. 岩土工程学报, 2007, 29(2): 289-293. doi: 10.3321/j.issn:1000-4548.2007.02.023

    LONG Jianhui, LI Tonglu, LEI Xiaofeng, et al. Study on physical properties of soil in sliding zone of loess landslip[J]. Chinese Journal of Geotechnical Engineering, 2007, 29(2): 289-293. (in Chinese) doi: 10.3321/j.issn:1000-4548.2007.02.023
    [11]
    周翠英, 牟春梅. 软土破裂面的微观结构特征与强度的关系[J]. 岩土工程学报, 2005, 27(10): 1136-1141. doi: 10.3321/j.issn:1000-4548.2005.10.005

    ZHOU Cuiying, MU Chunmei. Relationship between micro-structural characters of fracture surface and strength of soft clay[J]. Chinese Journal of Geotechnical Engineering, 2005, 27(10): 1136-1141. (in Chinese) doi: 10.3321/j.issn:1000-4548.2005.10.005
    [12]
    曹世超, 黄志全, 吴琦, 等. 巨型蠕滑滑坡滑带土特征强度特性试验研究[J]. 工程地质学报, 2019, 27(2): 341-349. https://www.cnki.com.cn/Article/CJFDTOTAL-GCDZ201902015.htm

    CAO Shichao, HUANG Zhiquan, WU Qi, et al. Experimental study on characteristic strength characteristics of slip zone of the giant creep landslide[J]. Journal of Engineering Geology, 2019, 27(2): 341-349. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-GCDZ201902015.htm
    [13]
    MIAO F S, WU Y P, LI L W, et al. Weakening laws of slip zone soils during wetting–drying cycles based on fractal theory: a case study in the Three Gorges Reservoir (China)[J]. Acta Geotechnica, 2020, 15(7): 1909-1923. doi: 10.1007/s11440-019-00894-8
    [14]
    SKEMPTON A W. Residual strength of clays in landslides, folded strata and the laboratory[J]. Géotechnique, 1985, 35(1): 3-18. doi: 10.1680/geot.1985.35.1.3
    [15]
    GRATCHEV I B, SASSA K. Shear strength of clay at different shear rates[J]. Journal of Geotechnical and Geoenvironmental Engineering, 2015, 141(5): 06015002. doi: 10.1061/(ASCE)GT.1943-5606.0001297
    [16]
    张荣, 吴益平, 李小伟, 等. 不同含水率下滑带土抗剪强度特性研究[J]. 科学技术与工程, 2015, 15(15): 195-199. https://www.cnki.com.cn/Article/CJFDTOTAL-KXJS201515037.htm

    ZHANG Rong, WU Yiping, LI Xiaowei, et al. Research on shear strength of slide zone soil in different water content[J]. Science Technology and Engineering, 2015, 15(15): 195-199. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-KXJS201515037.htm
    [17]
    吴迪, 简文彬, 徐超. 残积土抗剪强度的环剪试验研究[J]. 岩土力学, 2011, 32(7): 2045-2050. doi: 10.3969/j.issn.1000-7598.2011.07.022

    WU Di, JIAN Wenbin, XU Chao. Research on shear strength of residual soils by ring shear tests[J]. Rock and Soil Mechanics, 2011, 32(7): 2045-2050. (in Chinese) doi: 10.3969/j.issn.1000-7598.2011.07.022
    [18]
    刘动, 陈晓平. 滑带土环剪剪切面的微观观测与分析[J]. 岩石力学与工程学报, 2013, 32(9): 1827-1834. doi: 10.3969/j.issn.1000-6915.2013.09.014

    LIU Dong, CHEN Xiaoping. Microscopic observation and analysis of ring shear surface of slip zone soil[J]. Chinese Journal of Rock Mechanics and Engineering, 2013, 32(9): 1827-1834. (in Chinese) doi: 10.3969/j.issn.1000-6915.2013.09.014
    [19]
    SUZUKI M, VAN HAI N, YAMAMOTO T. Ring shear characteristics of discontinuous plane[J]. Soils and Foundations, 2017, 57(1): 1-22.
    [20]
    王顺, 项伟, 崔德山, 等. 不同环剪方式下滑带土残余强度试验研究[J]. 岩土力学, 2012, 33(10): 2967-2972. https://www.cnki.com.cn/Article/CJFDTOTAL-YTLX201210016.htm

    WANG Shun, XIANG Wei, CUI Deshan, et al. Study of residual strength of slide zone soil under different ring-shear tests[J]. Rock and Soil Mechanics, 2012, 33(10): 2967-2972. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YTLX201210016.htm
    [21]
    范志强, 唐辉明, 谭钦文, 等. 滑带土环剪试验及其对水库滑坡临滑强度的启示[J]. 岩土工程学报, 2019, 41(9): 1698-1706. http://manu31.magtech.com.cn/Jwk_ytgcxb/CN/abstract/abstract18001.shtml

    FAN Zhiqiang, TANG Huiming, TAN Qinwen, et al. Ring shear tests on slip soils and their enlightenment to critical strength of reservoir landslides[J]. Chinese Journal of Geotechnical Engineering, 2019, 41(9): 1698-1706. (in Chinese) http://manu31.magtech.com.cn/Jwk_ytgcxb/CN/abstract/abstract18001.shtml
    [22]
    廖建民, 吴益平, 欧光照, 等. 采用环剪仪对滑带土抗剪强度特性的研究[J]. 武汉理工大学学报, 2013, 35(10): 92-95. https://www.cnki.com.cn/Article/CJFDTOTAL-WHGY201310019.htm

    LIAO Jianmin, WU Yiping, OU Guangzhao, et al. Shear strength behavior of slide zone soil in ring shear tests[J]. Journal of Wuhan University of Technology, 2013, 35(10): 92-95. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-WHGY201310019.htm
    [23]
    DUONG N T, SUZUKI M, VAN HAI N. Rate and acceleration effects on residual strength of Kaolin and Kaolin–bentonite mixtures in ring shearing[J]. Soils and Foundations, 2018, 58(5): 1153-1172.
    [24]
    BHAT D R, YATABE R, BHANDARY N P. Study of preexisting shear surfaces of reactivated landslides from a strength recovery perspective[J]. Journal of Asian Earth Sciences, 2013, 77: 243-253.
  • Related Articles

    [1]ZHAO Yong, YANG Tian-hong, WANG Shu-hong, JIA Peng. Damage analysis method for mining rock mass based on microseismic-derived fractures and its engineering application[J]. Chinese Journal of Geotechnical Engineering, 2022, 44(2): 305-314. DOI: 10.11779/CJGE202202012
    [2]CHEN Lei, LI Shu-cai, LIU Bin, LI Ming, XU Xin-ji, LI Ning-bo, NIE Li-chao. Imaging method of seismic advanced detection in tunnels based on ellipse evolving CRP stacking and its application[J]. Chinese Journal of Geotechnical Engineering, 2018, 40(6): 1029-1038. DOI: 10.11779/CJGE201806008
    [3]LIU Xin-rong, LIU Yong-quan, YANG Zhong-ping, TU Yi-liang. Synthetic advanced geological prediction technology for tunnels based on GPR[J]. Chinese Journal of Geotechnical Engineering, 2015, 37(zk2): 51-56. DOI: 10.11779/CJGE2015S2011
    [4]XUE Luan-luan. Composite element algorithm of seepage-normal stress coupling for fractured rock masses with drainage holes[J]. Chinese Journal of Geotechnical Engineering, 2013, 35(8): 1429-1434.
    [5]LIU Bin, LI Shu-cai, NIE Li-chao, LI Li-ping, LIU Zheng-yu, SONG Jie, SUI Bin, ZHOU Zong-qing. Inversion imaging of 3D resistivity detection using adaptive-weighted smooth constraint and PCG algorithm[J]. Chinese Journal of Geotechnical Engineering, 2012, 34(9): 1646-1653.
    [6]Monitoring method for influence circle due to temperature variation in underground rock stratum[J]. Chinese Journal of Geotechnical Engineering, 2010, 32(11): 1727-1732.
    [7]XU Nengxiong, WU Xiong, WANG Xiaogang, JIA Zhixin, DUAN Qingwei. Approach to automatic hexahedron mesh generation for rock-mass with complex structure based on 3D geological modeling[J]. Chinese Journal of Geotechnical Engineering, 2006, 28(8): 957-961.
    [8]Pei Jue min, Lu Zu heng. The  Static  and  Dynamic  Methods  of  DDA  for  Jointed  Rock  Mass[J]. Chinese Journal of Geotechnical Engineering, 1996, 18(6): 50-58.
    [9]Mao Changxi, Chen Ping, Li Zuyi, Li Dingfang. Study on Computation Methods of Seepage Flow in Fractured Rock Masses[J]. Chinese Journal of Geotechnical Engineering, 1991, 13(6): 1-10.
    [10]SU He-yuan. 抽、灌水作用下上海土层变形特征的探讨[J]. Chinese Journal of Geotechnical Engineering, 1979, 1(1): 24-35.
  • Other Related Supplements

  • Cited by

    Periodical cited type(3)

    1. 刘瑞冰,韩晓冬,李民举,柳正,马建军. 高落差整体式主裙楼筏板基础沉降差控制分析. 科技和产业. 2025(07): 43-49 .
    2. 林杰. 某超高层桩基础设计与沉降计算分析. 福建建筑. 2025(04): 72-79 .
    3. 郭开麟,沈秉新,张玉兰. 基于DeepAR模型的建筑桩基沉降预测. 新城建科技. 2024(07): 151-154 .

    Other cited types(0)

Catalog

    Article views (349) PDF downloads (131) Cited by(3)
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return