Numerical simulation of deformation of strata and stacked tunnels under traffic loads of subway
-
摘要: 地铁列车运行时产生的行车荷载对地层和重叠隧道有显著影响。然而,现有研究很少聚焦重叠隧道变形响应,且缺乏行车荷载施加位置的影响。选取天津某重叠隧道工程,采用激振力函数确定行车荷载,开展地铁行车荷载作用下地层及重叠隧道变形数值模拟。结果表明:地铁行车荷载的施加位置会对地层位移和隧道变形产生明显影响。Smax值和i值均与数据提取位置相关。距隧道中心1.5D为地铁行车荷载引起地层水平位移的临界影响范围。三种工况作用下,隧道纵向变形均表现为整体下沉。行车荷载仅施加于上或下隧道时,施加荷载的隧道横向变形较大;同时施加于两隧道时,两隧道均在底部产生变形。Abstract: The traffic loads of subway have a significant impact on the strata and stacked tunnels. However, the existing studies have rarely focused on the deformation response of stacked tunnels and consider the influences of the location of the traffic loads. By selecting a stacked tunnel project in Tianjin, the excitation force function is used to determine the traffic loads, and numerical simulations are conducted to analyze the deformation of stacked tunnels under the traffic loads of subway. The results demonstrate that the position where the traffic loads of subway are applied significantly affects the displacement of strata and deformation of tunnels. Both Smax and i values are related to the location of data extraction. The critical influence range of lateral displacement caused by the traffic loads of subway is 1.5D from the center of the tunnel. Under the three conditions, the longitudinal deformations of the tunnels are overall downward. When the traffic loads of subway are applied only to the upper or the lower tunnel, the transverse deformation of the tunnel under the loads is large. When the loads are applied to two tunnels synchronously, both the two tunnels deform at the bottom.
-
-
表 1 土层参数
Table 1 Parameters of soil strata
土层 重度/(kN·m-3) 塑性体积模量对数 应力比 渗透系数/(m·d-1) 孔隙比 体积模量对数 泊松比 ①粉质黏土 18.4 0.058 0.86 0.00018 0.776 0.0072 0.32 ②砂质粉土 17.9 0.031 1.03 0.00050 0.742 0.0039 0.35 ③粉质黏土 10.3 0.055 0.89 0.00031 0.764 0.0069 0.35 ④粉土 12.2 0.020 1.37 2.00000 0.595 0.0025 0.30 ⑤粉质黏土 18.0 0.047 0.90 0.00485 0.683 0.0059 0.35 表 2 模拟方案
Table 2 Simulation schemes
工况 地铁行车荷载施加位置 上隧道 下隧道 C1 √ × C2 × √ C3 √ √ -
[1] 张曦, 唐益群, 周念清, 等. 地铁振动荷载作用下隧道周围饱和软黏土动力响应研究[J]. 土木工程学报, 2007, 40(2): 85-88. https://www.cnki.com.cn/Article/CJFDTOTAL-TMGC200702016.htm ZHANG Xi, TANG Yiqun, ZHOU Nianqing, et al. Dynamic response of saturated soft clay around a subway tunnel under vibration load[J]. China Civil Engineering Journal, 2007, 40(2): 85-88. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-TMGC200702016.htm
[2] 雷华阳, 张磊, 许英刚, 等. 快速地铁列车荷载下软土地基沉降数值模拟研究[J]. 岩土工程学报, 2019, 41(增刊1): 45-48. doi: 10.11779/CJGE2019S1012 LEI Huayang, ZHANG Lei, XU Yinggang, et al. Numerical simulation of settlement of soft soil foundation under fast metro train loads[J]. Chinese Journal of Geotechnical Engineering, 2019, 41(S1): 45-48. (in Chinese) doi: 10.11779/CJGE2019S1012
[3] 胡垚, 雷华阳, 雷峥, 等. 三向地震作用下叠交隧道地震响应振动台试验研究[J]. 岩土力学, 2022, 43(增刊2): 104-116, 129. https://www.cnki.com.cn/Article/CJFDTOTAL-YTLX2022S2011.htm HU Yao, LEI Huayang, LEI Zheng, et al. Shaking table test study on seismic response of overlapping tunnels under three-dimensional earthquake[J]. Rock and Soil Mechanics, 2022, 43(S2): 104-116, 129. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YTLX2022S2011.htm
[4] 安俊杰, 黄飞, 黄小亮, 等. 施工车辆荷载对隧道内煤系地层的影响规律研究[J]. 能源与环保, 2023, 45(3): 263-269. https://www.cnki.com.cn/Article/CJFDTOTAL-ZZMT202303045.htm AN Junjie, HUANG Fei, HUANG Xiaoliang, et al. Research on influencing law of construction vehicle load on coal measures strata in tunnels[J]. China Energy and Environmental Protection, 2023, 45(3): 263-269. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-ZZMT202303045.htm
[5] 郑海忠, 严武建, 石玉成, 等. 重复列车荷载作用下季节性冻土区桥墩-基础场地振动特性变形分析[J]. 工程地质学报, 2020, 28(4): 907-915. https://www.cnki.com.cn/Article/CJFDTOTAL-GCDZ202004024.htm ZHENG Haizhong, YAN Wujian, SHI Yucheng, et al. Vibration characteristics and long-term deformation analysis of bridge piers-foundation sites in seasonal frozen soil region under repeated train load[J]. Journal of Engineering Geology, 2020, 28(4): 907-915. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-GCDZ202004024.htm
[6] 陈凡, 王士民, 谢金池, 等. 液化砂土地层加固措施研究与盾构隧道列车振动响应分析[J]. 铁道标准设计, 2021, 65(4): 110-117. https://www.cnki.com.cn/Article/CJFDTOTAL-TDBS202104020.htm CHEN Fan, WANG Shimin, XIE Jinchi, et al. Research on strengthening measures of liquefiable sandy. ground and analysis of train vibration response of shield tunnel[J]. Railway Standard Design, 2021, 65(4): 110-117. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-TDBS202104020.htm
[7] 葛世平, 姚湘静, 叶斌, 等. 列车振动荷载作用下隧道周边软黏土长期沉降分析[J]. 岩石力学与工程学报, 2016, 35(11): 2359-2368. https://www.cnki.com.cn/Article/CJFDTOTAL-YSLX201611020.htm GE Shiping, YAO Xiangjing, YE Bin, et al. Analysis of long-term settlement of soft clay under train vibration[J]. Chinese Journal of Rock Mechanics and Engineering, 2016, 35(11): 2359-2368. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YSLX201611020.htm
[8] 莫海鸿, 邓飞皇, 王军辉. 营运期地铁盾构隧道动力响应分析[J]. 岩石力学与工程学报, 2006, 25(增刊2): 3507-3512. https://www.cnki.com.cn/Article/CJFDTOTAL-YSLX2006S2024.htm MO Haihong, DENG Feihuang, WANG Junhui. Dynamic response analysis of subway shield tunnel during operation period[J]. Chinese Journal of Rock Mechanics and Engineering, 2006, 25(S2): 3507-3512. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YSLX2006S2024.htm
[9] 杨文波, 邹涛, 涂玖林, 等. 高速列车振动荷载作用下马蹄形断面隧道动力响应特性分析[J]. 岩土力学, 2019, 40(9): 3635-3644. YANG Wenbo, ZOU Tao, TU Jiulin, et al. Analysis of dynamic response characteristics of horseshoe shaped cross-section tunnel under vibration load of high-speed train[J]. Rock and Soil Mechanics, 2019, 40(9): 3635-3644. (in Chinese)
[10] 高峰, 关宝树, 仇文革, 等. 列车荷载作用下地铁重叠隧道的响应分析[J]. 西南交通大学学报, 2003, 38(1): 38-42. https://www.cnki.com.cn/Article/CJFDTOTAL-XNJT200301009.htm GAO Feng, GUAN Baoshu, QIU Wenge, et al. Dynamic responses of overlapping tunnels to passing trains[J]. Journal of Southwest Jiaotong University, 2003, 38(1): 38-42. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-XNJT200301009.htm
[11] 潘昌实, PANDE G N. 黄土隧道列车动荷载响应有限元初步数定分析研究[J]. 土木工程学报, 1984, 17(4): 19-28, 18. https://www.cnki.com.cn/Article/CJFDTOTAL-TMGC198404001.htm PAN Changshi, PANDE G N. Preliminary deterministic finite element study on a tunnel driven in loess subjected to train loading[J]. China Civil Engineering Journal, 1984, 17(4): 19-28, 18. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-TMGC198404001.htm
[12] 胡昭艳, 齐静, 高峰. 高速铁路列车振动荷载的分析[J]. 四川建筑, 2008, 28(1): 65-66. https://www.cnki.com.cn/Article/CJFDTOTAL-SCJI200801028.htm HU Zhaoyan, QI Jing, GAO Feng. Analysis of vibration load of high-speed railway trains[J]. Sichuan Architecture, 2008, 28(1): 65-66. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-SCJI200801028.htm
[13] 韩俊艳, 万宁潭, 赵密, 等. 地铁振动荷载作用下场地动力响应及振动衰减规律研究[J]. 防灾减灾工程学报, 2022, 42(1): 191-199. https://www.cnki.com.cn/Article/CJFDTOTAL-DZXK202201021.htm HAN Junyan, WAN Ningtan, ZHAO Mi, et al. Research on site dynamic response and vibration attenuation under the vibration loading of subway[J]. Journal of Disaster Prevention and Mitigation Engineering. 2022, 42(1): 191-199. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-DZXK202201021.htm
[14] HU Y, LEI H Y, ZHENG G, et al. Assessing the deformation response of double-track overlapped tunnels using numerical simulation and field monitoring[J]. Journal of Rock Mechanics and Geotechnical Engineering, 2022, 14(2): 436-447.
[15] 孙凤明. 小近距并行盾构隧道的掘进相互影响分析[D]. 浙江大学, 2015. SUN Fengming. Analysis of Interaction between Small-Spacing Parallel Shield Tunnel Excavations[D]. Hangzhou: Zhejiang University, 2015. (in Chinese)