• 全国中文核心期刊
  • 中国科技核心期刊
  • 美国工程索引(EI)收录期刊
  • Scopus数据库收录期刊

单裂隙低渗透地层原位氧化修复机制与适用性研究

郑奇腾, 张旭, 冯世进, 陈宏信, 张晓磊

郑奇腾, 张旭, 冯世进, 陈宏信, 张晓磊. 单裂隙低渗透地层原位氧化修复机制与适用性研究[J]. 岩土工程学报, 2025, 47(5): 1036-1044. DOI: 10.11779/CJGE20231293
引用本文: 郑奇腾, 张旭, 冯世进, 陈宏信, 张晓磊. 单裂隙低渗透地层原位氧化修复机制与适用性研究[J]. 岩土工程学报, 2025, 47(5): 1036-1044. DOI: 10.11779/CJGE20231293
ZHENG Qiteng, ZHANG Xu, FENG Shijin, CHEN Hongxin, ZHANG Xiaolei. Mechanism and application of in-situ oxidation in low-permeability strata with a single fracture[J]. Chinese Journal of Geotechnical Engineering, 2025, 47(5): 1036-1044. DOI: 10.11779/CJGE20231293
Citation: ZHENG Qiteng, ZHANG Xu, FENG Shijin, CHEN Hongxin, ZHANG Xiaolei. Mechanism and application of in-situ oxidation in low-permeability strata with a single fracture[J]. Chinese Journal of Geotechnical Engineering, 2025, 47(5): 1036-1044. DOI: 10.11779/CJGE20231293

单裂隙低渗透地层原位氧化修复机制与适用性研究  English Version

基金项目: 

国家重大科研仪器研制项目 42227804

国家自然科学基金面上项目 42377152

详细信息
    作者简介:

    郑奇腾(1991—),男,博士,助理教授,硕士生导师,主要从事环境岩土工程的教学与科研工作。E-mail:089itengzheng@tongji.edu.cn

    通讯作者:

    冯世进, E-mail: fsjgly@tongji.edu.cn

  • 中图分类号: TU43

Mechanism and application of in-situ oxidation in low-permeability strata with a single fracture

  • 摘要: 低渗透地层具有渗透性差、物质传输困难等特点,传统氧化修复技术(ISCO)难以满足需求,而压裂可以形成优势渗流通道,提升注入氧化剂的影响范围,但目前对压裂协同氧化机制的认识仍不足,相应的设计指南也极为缺乏。因此,考虑复合溶质对流、扩散、反应和天然需氧量(NOD),建立了单裂隙低渗透地层ISCO修复二维轴对称模型,揭示了氧化剂沿孔隙-裂隙多尺度结构的迁移转化与修复机制,研究了注入压力、氧化剂猝灭、污染物非平衡吸附、基质渗透和扩散系数及污染物分布特征对修复效率的影响规律,结果表明压裂ISCO修复技术更适用于基质渗透系数≤10-7 m/s且扩散系数≤8.4×10-10 m2/s的低渗透污染地层,且裂隙宜布置在污染羽中下层、氧化剂注入后需持续维持水头,否则修复效果欠佳。最后,对比了不考虑和考虑反应条件下氧化剂的径向和垂向影响范围,提出了相应的设计思路,为压裂増渗协同修复技术的完善提供一定的理论依据。
    Abstract: The low-permeability strata are characterized by poor permeability and difficulty in substance transport. The traditional in-situ chemical oxidation (ISCO) techniques often fall short in addressing these challenges. Hydraulic fracturing creates advantageous flow channels, enhancing the ranges of injected oxidants. However, the current understanding of the synergistic mechanism between fracturing and oxidation remains limited, leading to a lack of corresponding design guidelines. Thus, this study considers compound solute advection, diffusion, reactions and natural oxidant demand (NOD) to establish a two-dimensional axisymmetric model for ISCO remediation in low-permeability strata with a single fracture. It reveals the migration and transformation mechanisms of oxidants across pore-fracture multiscale structures, investigating the influences of injection pressure, oxidant quenching, non-equilibrium adsorption of contaminants, matrix permeability, diffusion coefficients and pollutant distribution on remediation efficiency. The results indicate that the hydraulic fracturing ISCO is more suitable for low-permeability contaminated strata with matrix permeability ≤10-7 m/s and diffusion coefficients ≤8.4×10-10 m2/s. Placing fractures in the lower layer of the contaminant plume is suggested, maintaining hydraulic head post-oxidant injection for optimal remediation. Finally, comparisons of radial and vertical ranges of oxidants between with and without considering reaction conditions are made, proposing the corresponding design strategies to refine synergistic hydraulic fracturing-enhanced remediation technologies based on the theoretical foundations.
  • 图  1   压裂黏土地层中氧化修复二维轴对称模型示意图

    Figure  1.   Schematic diagram of a two-dimensional axisymmetric model for ISCO in a fractured clay stratum

    图  2   氧化剂总量时变曲线

    Figure  2.   Time-varying curves of total amount of oxidant (a) ignoring and (b) considering reaction

    图  3   不同注入条件下第200天污染物浓度分布

    Figure  3.   Distribution of contamination concentration on 200th day under different injection conditions

    图  4   不同注入条件下TCE残余率的时变曲线

    Figure  4.   Time-varying curves of TCE residual rate under different injection conditions

    图  5   不同基质渗透系数下第200天沿裂隙和垂直于裂隙的TCE浓度分布

    Figure  5.   Distribution of TCE concentration (a) in fracture and (b) perpendicular to fracture on 200th day for different values of matrix permeability

    图  6   不同基质渗透系数下TCE残余率时变曲线

    Figure  6.   Time-varying curves of TCE residual rate under different values of matrix permeability

    图  7   不同基质扩散系数下第200天氧化剂和污染物浓度空间分布和TCE残余率时变曲线

    Figure  7.   (a) Spatial distribution of oxidant and contamination concentration on 200th day and (b) time-varying curves of TCE residual rate, for different matrix diffusion coefficients

    图  8   不同污染分布特征下TCE残余率的时变曲线

    Figure  8.   Time-varying curves of TCE residual rate under different characteristics of contamination distribution

    图  9   不同注入流速下裂隙中流速分布和TCE残余率时变曲线

    Figure  9.   (a) Distribution of velocity distribution in fracture and (b) TCE residual rate, for different injection velocities

    图  10   氧化剂迁移范围说明以及垂向VD和径向FD随基质渗透系数和扩散系数的变化

    Figure  10.   (a) Explanation of migration area and parameters of oxidants; The relationship between vertical VD and radial FD of partial and total pollution of soil with (b) permeability and (c) diffusion coefficient on 200th day

    表  1   模拟所用的基本参数

    Table  1   Values of parameters in simulation

    参数 符号含义 单位 参数值 文献
    土体参数 ns 基质孔隙率 1 0.42 文献[22]
    ks 基质渗透系数 m/s 10-8 文献[22]
    ρd 土体干密度 kg/m3 1700
    裂隙参数 df 裂隙孔径 cm 1 文献[25]
    Df 裂隙深度 m 5 文献[27]
    nf 裂隙孔隙率 1 0.7 文献[25]
    反应物基本参数 MMnO4- 高锰酸钾摩尔质量 g/mol 158 文献[23]
    MTCE TCE摩尔质量 g/mol 131 文献[23]
    DMnO4- 氧化剂扩散
    系数
    m2/s 1.4×10-9 文献[24]
    DTCE TCE扩散系数 m2/s 8.4×10-10 文献[24]
    kreact 反应速率常数 m3/mol/s 6.5×10-4 文献[26]
    a 理想状态下
    摩尔比
    1 2
    Cs 高锰酸钾溶
    解度
    kg/m3 63.99
    下载: 导出CSV

    表  2   氧化剂猝灭和非平衡吸附参数

    Table  2   Values of parameters-related oxidant quenching and nonequilibrium adsorption

    符号 参数含义 参数值 单位 来源
    kde 猝灭系数 0.01 1/d
    ks 非平衡吸附动力学系数 1.75×10-4 1/s 文献[30]
    Sk 非平衡吸附相上吸附浓度 mol/kg 文献[30]
    KF Freundich分配系数 4×10-4 m3/kg 文献[30]
    F 平衡吸附占比 0.22 文献[30]
    下载: 导出CSV
  • [1] 陈能场, 郑煜基, 何晓峰, 等. 《全国土壤污染状况调查公报》探析[J]. 农业环境科学学报, 2017, 36(9): 1689-1692.

    CHEN Nengchang, ZHENG Yuji, HE Xiaofeng, et al. Analysis of the report on the national general survey of soil contamination[J]. Journal of Agro-Environment Science, 2017, 36(9): 1689-1692. (in Chinese)

    [2] 孟宪荣, 许伟, 张建荣. 化工污染场地氯苯分布特征[J]. 土壤, 2019, 51(6): 1144-1150.

    MENG Xianrong, XU Wei, ZHANG Jianrong. Distribution characters of chlorobenzene in polluted chemical industrial site[J]. Soils, 2019, 51(6): 1144-1150. (in Chinese)

    [3]

    SIEGRIST R L A C. In Situ Chemical Oxidation for Groundwater Remediation[M]. New York: Springer, 2011.

    [4]

    YEH C K J, WU H M, CHEN T C. Chemical oxidation of chlorinated non-aqueous phase liquid by hydrogen peroxide in natural sand systems[J]. Journal of Hazardous Materials, 2003, 96(1): 29-51. doi: 10.1016/S0304-3894(02)00147-4

    [5]

    GAO L Z, ZHUANG J, NIE L, et al. Intrinsic peroxidase-like activity of ferromagnetic nanoparticles[J]. Nature Nanotechnology, 2007, 2(9): 577-583. doi: 10.1038/nnano.2007.260

    [6]

    LEE E S, SCHWARTZ F W. Characteristics and applications of controlled-release KMnO4 for groundwater remediation[J]. Chemosphere, 2007, 66(11): 2058-2066. doi: 10.1016/j.chemosphere.2006.09.093

    [7]

    HEIDERSCHEIDT J L, CRIMI M, SIEGRIST R L, et al. Optimization of full-scale permanganate ISCO system operation: laboratory and numerical studies[J]. Groundwater Monitoring & Remediation, 2008, 28(4): 72-84.

    [8]

    REECE J, CHRISTENSON M, KAMBHU A, et al. Remediating contaminated groundwater with an aerated, direct-push, oxidant delivery system[J]. Water, 2020, 12(12): 3383. doi: 10.3390/w12123383

    [9] 蒲生彦, 唐菁, 侯国庆, 等. 缓释型化学氧化剂在地下水DNAPLs污染修复中的应用研究进展[J]. 环境化学, 2020, 39(3): 791-799.

    PU Shengyan, TANG Jing, HOU Guoqing, et al. The application progress of sustained-release chemical oxidants in the remediation of DNAPLs contaminated groundwater[J]. Environmental Chemistry, 2020, 39(3): 791-799. (in Chinese)

    [10]

    HU J, MOOD C G, MEAR M E. An efficient computational framework for height-contained growing and intersecting hydraulic fracturing simulation via SGBEM–FEM[J]. Computer Methods in Applied Mechanics and Engineering, 2024, 419: 116653. doi: 10.1016/j.cma.2023.116653

    [11]

    LHOTSKÝ O, KUKAČKA J, SLUNSKÝ J, et al. The effects of hydraulic/pneumatic fracturing-enhanced remediation (FRAC-IN) at a site contaminated by chlorinated ethenes: a case study[J]. Journal of Hazardous Materials, 2021, 417: 125883. doi: 10.1016/j.jhazmat.2021.125883

    [12]

    MURDOCH L C, SLACK W W. Forms of hydraulic fractures in shallow fine-grained formations[J]. Journal of Geotechnical and Geoenvironmental Engineering, 2002, 128(6): 479-487. doi: 10.1061/(ASCE)1090-0241(2002)128:6(479)

    [13]

    SCHULENBERG J W, REEVES H W. Axi-symmetric simulation of soil vapor extraction influenced by soil fracturing[J]. Journal of Contaminant Hydrology, 2002, 57(3/4): 189-222.

    [14]

    HAUSWIRTH S C, BOWERS C A, FOWLER C P, et al. Modeling cross model non-Newtonian fluid flow in porous media[J]. Journal of Contaminant Hydrology, 2020, 235: 103708. doi: 10.1016/j.jconhyd.2020.103708

    [15]

    HORST J, DIVINE C, SCHNOBRICH M, et al. Groundwater remediation in low-permeability settings: the evolving spectrum of proven and potential [J]. Ground Water Monitoring and Remediation, 2019, 39(1): 11-19. doi: 10.1111/gwmr.12316

    [16]

    FAN D M, GILBERT E J, FOX T. Current state of in situ subsurface remediation by activated carbon-based amendments[J]. Journal of Environmental Management, 2017, 204: 793-803. doi: 10.1016/j.jenvman.2017.02.014

    [17]

    MAHMOODLU M G, HASSANIZADEH S M, HARTOG N. Evaluation of the kinetic oxidation of aqueous volatile organic compounds by permanganate[J]. Science of the Total Environment, 2014, 485: 755-763.

    [18]

    CHA K Y, BORDEN R C. Impact of injection system design on ISCO performance with permanganate—mathematical modeling results[J]. Journal of Contaminant Hydrology, 2012, 128(1/2/3/4): 33-46.

    [19]

    FENG S J, ZHANG X, ZHENG Q T, et al. Modeling the spreading and remediation efficiency of slow-release oxidants in a fractured and contaminated low-permeability stratum[J]. Chemosphere, 2023, 337: 139271. doi: 10.1016/j.chemosphere.2023.139271

    [20]

    GELHAR L W. Stochastic subsurface hydrology from theory to applications[J]. Water Resources Research, 1986, 22(9): 135-145.

    [21]

    GELHAR L W, WELTY C, REHFELDT K R. A critical review of data on field-scale dispersion in aquifers[J]. Water Resources Research, 1992, 28(7): 1955-1974. doi: 10.1029/92WR00607

    [22] 朱学愚, 钱孝星. 地下水水文学[M]. 北京: 中国环境科学出版社, 2005.

    ZHU Xueyu, QIAN Xiaoxing. Groundwater Hydrology[M]. Beijing: China Environmental Science Press, 2005. (in Chinese)

    [23]

    LUCKENBACH R. The Beilstein handbook of organic chemistry: the first hundred years[J]. Journal of Chemical Information and Computer Sciences, 1981, 21(2): 82-83. doi: 10.1021/ci00030a006

    [24]

    YUAN B L, LI F, CHEN Y M, et al. Laboratory-scale column study for remediation of TCE-contaminated aquifers using three-section controlled-release potassium permanganate barriers[J]. Journal of Environmental Sciences, 2013, 25(5): 971-977. doi: 10.1016/S1001-0742(12)60134-X

    [25]

    TZOVOLOU D N, AGGELOPOULOS C A, THEODOROPOULOU M A, et al. Remediation of the unsaturated zone of NAPL-polluted low permeability soils with steam injection: an experimental study[J]. Journal of Soils and Sediments, 2011, 11(1): 72-81. doi: 10.1007/s11368-010-0268-5

    [26]

    YAN Y E, SCHWARTZ F W. Oxidative degradation and kinetics of chlorinated ethylenes by potassium permanganate[J]. Journal of Contaminant Hydrology, 1999, 37(3/4): 343-365.

    [27]

    CHRISTENSON M D, KAMBHU A, COMFORT S D. Using slow-release permanganate candles to remove TCE from a low permeable aquifer at a former landfill[J]. Chemosphere, 2012, 89(6): 680-687. doi: 10.1016/j.chemosphere.2012.06.009

    [28]

    KLOTZ D, SEILER K P, MOSER H, et al. Dispersivity and velocity relationship from laboratory and field experiments[J]. Journal of Hydrology, 1980, 45(3/4): 169-184.

    [29]

    CHRISTENSON M, KAMBHU A, REECE J, et al. A five-year performance review of field-scale, slow-release permanganate candles with recommendations for second- generation improvements[J]. Chemosphere, 2016, 150: 239-247. doi: 10.1016/j.chemosphere.2016.01.125

    [30] 王浩越, 陈宏信, 冯世进, 等. 非平衡吸附条件下双分子反应性溶质运移规律研究[J]. 岩土工程学报, 2023, 45(12): 2547-2555. doi: 10.11779/CJGE20221063

    WANG Haoyue, CHEN Hongxin, FENG Shijin, et al. Migration of bimolecular reactive solutes considering nonequilibrium sorption[J]. Chinese Journal of Geotechnical Engineering, 2023, 45(12): 2547-2555. (in Chinese) doi: 10.11779/CJGE20221063

    [31]

    GOMEZ-TAYLOR M. National primary drinking water regulation for nitrate and nitrite[J]. Abstracts of Papers of the American Chemical Society, 1989, 197.

    [32]

    CHEN H, FENG S J, ZHENG Q T, et al. Enhanced delivery of amendments in fractured clay sites based on multi-point injection: an analytical study[J]. Chemosphere, 2022, 297: 134086. doi: 10.1016/j.chemosphere.2022.134086

图(10)  /  表(2)
计量
  • 文章访问数:  191
  • HTML全文浏览量:  12
  • PDF下载量:  21
  • 被引次数: 0
出版历程
  • 收稿日期:  2023-12-27
  • 网络出版日期:  2024-05-29
  • 刊出日期:  2025-04-30

目录

    /

    返回文章
    返回