再生聚酯纤维与无机固化剂改良粉土热学与力学性能相关性研究

    刘路路, 蔡国军, 刘松玉

    刘路路, 蔡国军, 刘松玉. 再生聚酯纤维与无机固化剂改良粉土热学与力学性能相关性研究[J]. 岩土工程学报, 2022, 44(12): 2253-2262. DOI: 10.11779/CJGE202212012
    引用本文: 刘路路, 蔡国军, 刘松玉. 再生聚酯纤维与无机固化剂改良粉土热学与力学性能相关性研究[J]. 岩土工程学报, 2022, 44(12): 2253-2262. DOI: 10.11779/CJGE202212012
    LIU Lu-lu, CAI Guo-jun, LIU Song-yu. Correlation between thermal and mechanical properties of recycled polyester fiber and inorganic curing agent-improved silt[J]. Chinese Journal of Geotechnical Engineering, 2022, 44(12): 2253-2262. DOI: 10.11779/CJGE202212012
    Citation: LIU Lu-lu, CAI Guo-jun, LIU Song-yu. Correlation between thermal and mechanical properties of recycled polyester fiber and inorganic curing agent-improved silt[J]. Chinese Journal of Geotechnical Engineering, 2022, 44(12): 2253-2262. DOI: 10.11779/CJGE202212012

    再生聚酯纤维与无机固化剂改良粉土热学与力学性能相关性研究  English Version

    基金项目: 

    国家重点研发计划 2020YFC1807200

    国家自然科学基金项目 42225206

    国家自然科学基金项目 52108332

    特殊地区公路工程教育部重点实验室(长安大学)开放基金项目 300102212510

    详细信息
      作者简介:

      刘路路(1990—),男,山东泰安人,博士后,助理研究员,主要从事特殊土工程性质与固废资源化利用等方面的研究工作。E-mail: believeliululu@163.com

    • 中图分类号: TU47

    Correlation between thermal and mechanical properties of recycled polyester fiber and inorganic curing agent-improved silt

    • 摘要: 改良土在涉及能源岩土领域的地基处理、管道保护、能量吸收和减振等方面具有广泛的应用潜力,与能源岩土密切相关的土体热学与力学特性相关性研究对指导地下能源结构设计、施工与养护具有重要参考价值。为揭示再生聚酯纤维与无机固化剂改良粉土热学与力学特性随养护龄期的演化规律,通过宏观(击实、无侧限抗压强度、回弹模量)测试、微观测试(压汞与扫描电镜)与热导率测试,分析了改良粉土热学特性(热导率)、力学特性(强度、回弹模量)与再生聚酯纤维掺量、含水率、龄期的变化规律,同时探讨了改良粉土孔隙大小与微观结构的规律变化,阐述了改良粉土热学与力学特性间的内在联系。结果表明:纤维的掺入使得素改良粉土最优含水率增加;改良粉土的热导率随纤维掺量和龄期的增加而降低,28 d龄期后,含水率变化对改良粉土热导率的影响微弱;28 d龄期改良粉土的路用性能符合公路路基设计规定;改良粉土中衍生出的胶结物质能够包裹颗粒与填充孔隙,同时也抑制了粉土的内部热传导性能;改良粉土热导率随抗压强度、回弹模量的增加而减小,表现出负相关的发展关系。
      Abstract: The improved soil has a wide application potential in foundation treatment, pipeline protection, energy absorption and vibration reduction in the field of energy rock and soil. The researches on the correlation between thermal and mechanical properties of soil closely related to the energy rock and soil are of important reference value for guiding the design, construction and maintenance of underground energy structures. To reveal the evolution laws of the thermal and mechanical properties of silt improved by recycled polyester fiber and inorganic curing agent with curing age, the macroscopic tests (compaction, unconfined compressive strength, resilience modulus), microscopic tests (mercury injection and scanning electron microscopy) and thermal conductivity tests are carried out. The changes of thermal properties (thermal conductivity), mechanical properties (strength, resilience modulus), content of recycled polyester fiber, water content and age of the improved silt are analyzed. The changes of pore size and microstructure of the improved silt are also discussed. The internal relationship between thermal and mechanical properties of the improved silt is expounded. The results show that the addition of the fiber increases the optimum moisture content of silt. The thermal conductivity of the improved silt decreases with the increase of the fiber content and age. After 28 days of age, the change of water content has few effects on the thermal conductivity of the improved silt. The road performance of improved silt meets the design requirements of highway subgrade. The cementing materials derived from the improved silt can wrap particles and fill pores, and inhibit the internal heat conduction of the silt. The thermal conductivity of the improved silt decreases with the increase of the compressive strength and resilience modulus, showing a negative correlation.
    • 图  1   粉土颗分曲线

      Figure  1.   Grain-size distribution curve of silt

      图  2   土体热导设备与结构示意图

      Figure  2.   Schematic diagram of soil thermal conductivity equipment and structure

      图  3   不同纤维掺量下龄期对改良粉土热导率的影响

      Figure  3.   Influences of curing age on thermal conductivity of improved silt with different fiber contents

      图  4   不同含水率下龄期对改良粉土热导率的影响

      Figure  4.   Effects of curing age on thermal conductivity of improved silt under different moisture contents

      图  5   改良粉土击实特性

      Figure  5.   Compaction characteristics of improved soil

      图  6   不同压实度下改良粉土无侧限抗压强度变化

      Figure  6.   Change of unconfined compressive strength of improved soil under different degrees of compaction

      图  7   无侧限抗压试验改良粉土试样破坏形态

      Figure  7.   Failure modes of improved soil samples in unconfined compression tests

      图  8   不同压实度下改良粉土回弹模量变化

      Figure  8.   Change of resilience modulus of improved soil under different degrees of compaction

      图  9   粉土与不同养护龄期改良粉土MIP结果

      Figure  9.   MIP results of silt and improved soil at different curing ages

      图  10   粉土与不同龄期改良粉土试样孔隙体积分布曲线的高斯拟合

      Figure  10.   Gaussian fitting of pore volume distribution curves of silt and improved soil samples at different curing ages

      图  11   粉土试样SEM照片[20]

      Figure  11.   SEM photos of silt samples

      图  12   改良粉土试样SEM照片(7 d养护龄期)

      Figure  12.   SEM photos of improved soil samples (7 days)

      图  13   改良粉土试样SEM照片(14 d养护龄期)

      Figure  13.   SEM photos of improved soil samples (14 days)

      图  14   改良粉土试样SEM照片(28 d养护龄期)

      Figure  14.   SEM photos of improved soil samples (28 days)

      图  15   热导率与重度关系

      Figure  15.   Relationship between thermal conductivity and gravity

      图  16   改良粉土热导率与力学指标相关关系

      Figure  16.   Correlation between thermal conductivity and mechanical indexes of improved soil

      表  1   粉土与不同龄期改良粉土试样孔隙体积分布曲线的高斯拟合结果

      Table  1   Gaussian fitting results of pore volume distribution curves of silt and improved soil samples at different curing ages

      土类型 曲线类型 μ1 w1 A1 μ2 w2 A2
      粉土 双峰 1.078 0.802 0.357 8.647 3.227 2.241
      7 d龄期改良粉土 单峰 1.012 0.561 0.295
      28 d龄期改良粉土 单峰 0.804 0.327 0.204
      下载: 导出CSV
    • [1] 李建军, 梁仁旺. 水泥土抗压强度和变形模量试验研究[J]. 岩土力学, 2009, 30(2): 473–477. doi: 10.3969/j.issn.1000-7598.2009.02.032

      LI Jian-jun, LIANG Ren-wang. Research on compression strength and modulus of deformation of cemented soil[J]. Rock and Soil Mechanics, 2009, 30(2): 473–477. (in Chinese) doi: 10.3969/j.issn.1000-7598.2009.02.032

      [2] 汪军, 杨璇, 傅婷. 废旧纺织品回收综合利用和产品开发相关问题的探讨[J]. 现代纺织技术, 2013, 21(3): 25–28, 33. doi: 10.3969/j.issn.1009-265X.2013.03.007

      WANG Jun, YANG Xuan, FU Ting. Research on the recovery and comprehensive utilization of waste textiles and product development[J]. Advanced Textile Technology, 2013, 21(3): 25–28, 33. (in Chinese) doi: 10.3969/j.issn.1009-265X.2013.03.007

      [3] 邰玉蕾, 赵亚娟, 马希晨, 等. 废旧聚酯瓶片的回收新技术[J]. 塑料科技, 2004(4): 61–64. doi: 10.3969/j.issn.1005-3360.2004.04.015

      TAI Yu-lei, ZHAO Ya-jun, MA Xi-chen, et al. New recycling technologies of waste polyester bottle [J]. Plastics Science and Technology, 2004(4): 61–64. (in Chinese) doi: 10.3969/j.issn.1005-3360.2004.04.015

      [4] 王德银, 唐朝生, 李建, 等. 纤维加筋非饱和黏性土的剪切强度特性[J]. 岩土工程学报, 2013, 35(10): 1933–1940. https://www.cnki.com.cn/Article/CJFDTOTAL-YTGC201310029.htm

      WANG De-yin, TANG Chao-sheng, et al. Shear strength characteristics of fiber reinforced unsaturated cohesive soil[J]. Chinese Journal of Geotechnical Engineering, 2013, 35(10): 1933–1940. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YTGC201310029.htm

      [5]

      AKBULUT S, ARASAN S, KALKAN E. Modification of clayey soils using scrap tire rubber and synthetic fibers[J]. Applied Clay Science, 2007, 38(1): 23–32.

      [6] 唐朝生, 施斌, 高玮, 等. 含砂量对聚丙烯纤维加筋黏性土强度影响的研究[J]. 岩石力学与工程学报, 2007, 26(增刊1): 2968–2973. https://www.cnki.com.cn/Article/CJFDTOTAL-YSLX2007S1057.htm

      TANG Chao-sheng, SHI Bin, GAO Wei, et al. Study on the effect of sand content on the strength of polypropylene fiber reinforced cohesive soil[J]. Chinese Journal of Rock Mechanics and Engineering, 2007, 26(S1): 2968–2973. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YSLX2007S1057.htm

      [7]

      MILLER C J, RIFAI S. Fiber reinforcement for waste containment soil liners[J]. Journal of Environmental Engineering, 2004, 130(8): 891–895. doi: 10.1061/(ASCE)0733-9372(2004)130:8(891)

      [8]

      KUMAR A, WALIA B S, BAJAJ A. Influence of fly ash, lime, and polyester fibers on compaction and strength properties of expansive soil[J]. Journal of Materials in Civil Engineering, 2007, 19(3): 242–248. doi: 10.1061/(ASCE)0899-1561(2007)19:3(242)

      [9]

      SHAO W, CETIN B, LI Y D, et al. Experimental investigation of mechanical properties of sands reinforced with discrete randomly distributed fiber[J]. Geotechnical and Geological Engineering, 2014, 32(4): 901–910. doi: 10.1007/s10706-014-9766-3

      [10] 唐朝生, 施斌, 刘春, 等. 影响黏性土表面干缩裂缝结构形态的因素及定量分析[J]. 水利学报, 2007, 38(10): 1186–1193. doi: 10.3321/j.issn:0559-9350.2007.10.006

      TANG Chao-sheng, SHI Bin, LIU Chun, et al. Factors affecting the surface cracking in clay due to drying shrinkage[J]. Journal of Hydraulic Engineering, 2007, 38(10): 1186–1193. (in Chinese) doi: 10.3321/j.issn:0559-9350.2007.10.006

      [11]

      CHANGIZI F, HADDAD A. Strength properties of soft clay treated with mixture of nano-SiO2 and recycled polyester fiber[J]. Journal of Rock Mechanics and Geotechnical Engineering, 2015, 7(4): 367–378. doi: 10.1016/j.jrmge.2015.03.013

      [12]

      LIU L L, CAI G J, LIU X Y, et al. Evaluation of thermal-mechanical properties of quartz sand-bentonite- carbon fiber mixtures as the borehole backfilling material in ground source heat pump[J]. Energy and Buildings, 2019, 202: 109407. doi: 10.1016/j.enbuild.2019.109407

      [13] 土工试验规程: SL 237—1999[S]. 1999.

      Specification of Soil Test: SL 237—1999[S]. 1999. (in Chinese)

      [14] 张蒋. 聚丙烯纤维加筋粉煤灰—土力学性能研究[D]. 武汉: 湖北工业大学, 2019.

      ZHANG Jiang. Study on Mechanical Behaviors of Polypropylene Fiber Reinforced Fly Ash-Soil Mixture[D]. Wuhan: Hubei University of Technology, 2019. (in Chinese)

      [15]

      ZHANG Y, JOHNSON A E, WHITE D J. Freeze-thaw performance of cement and fly ash stabilized loess[J]. Transportation Geotechnics, 2019, 21: 100279. doi: 10.1016/j.trgeo.2019.100279

      [16] 朱聪. 再生建筑石膏水化硬化及增强改性研究[D]. 重庆: 重庆大学, 2018.

      ZHU Cong. Study on the Hydration-Hardening Mechanism and Reinforced Modification of Recycled Building Gypsum[D]. Chongqing: Chongqing University, 2018. (in Chinese)

      [17] 林彤, 刘祖德. 粉煤灰与生石灰加固软土的室内试验研究[J]. 岩土力学, 2003, 24(6): 1049–1052. doi: 10.3969/j.issn.1000-7598.2003.06.039

      LIN Tong, LIU Zu-de. Study on indoor tests of fly ash and quick lime improving soft soils[J]. Rock and Soil Mechanics, 2003, 24(6): 1049–1052. (in Chinese) doi: 10.3969/j.issn.1000-7598.2003.06.039

      [18]

      CHADUVULA U, VISWANADHAM B, KODIKARA J. A study on desiccation cracking behavior of polyester fiberreinforced expansive clay[J]. Applied Clay Science, 2017, 142: 163–172. doi: 10.1016/j.clay.2017.02.008

      [19] 唐朝生, 顾凯. 聚丙烯纤维和水泥加固软土的强度特性[J]. 土木工程学报, 2011, 44(增刊2): 5–8. https://www.cnki.com.cn/Article/CJFDTOTAL-TMGC2011S2003.htm

      TANG Chao-sheng, GU Kai. Strength behaviour of polypropylene fiber reinforced cement stabilized soft soil[J]. China Civil Engineering Journal, 2011, 44(S2): 5–8. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-TMGC2011S2003.htm

      [20] 公路土工试验规程: JTG E40—2007, 2007.

      Test Methods of Soils Highway Engineering: JTG E40—2007[S]. (in Chinese)

      [21] 张涛. 基于工业副产品木质素的粉土固化改良技术与工程应用研究[D]. 南京: 东南大学, 2015.

      ZHANG Tao. Study on Technology and Engineering Application of Silt Solidified by Lignin[D]. Nanjing: Southeast University, 2015. (in Chinese)

      [22]

      ZHANG N, WANG Z Y. Review of soil thermal conductivity and predictive models[J]. International Journal of Thermal Sciences, 2017, 117: 172–183. doi: 10.1016/j.ijthermalsci.2017.03.013

      [23] 公路沥青路面设计规范: JTG D50—2006[S]. 北京: 人民交通出版社, 2006.

      Specifications for Design of Highway Asphalt Pavement: JTG D50—2006[S]. Beijing: China Communications Press, 2006. (in Chinese)

      [24] 唐朝生, 施斌, 蔡奕, 等. 聚丙烯纤维加固软土的试验研究[J]. 岩土力学, 2007, 28(9): 1796–1800. https://www.cnki.com.cn/Article/CJFDTOTAL-YTLX200709005.htm

      TANG Chao-sheng, SHI Bin, CAI Yi, et al. Experimental study on polypropylene fiber improving soft soils[J]. Rock and Soil Mechanics, 2007, 28(9): 1796–1800. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YTLX200709005.htm

      [25]

      MISHRA S, MOHANTY A K, DRZAL L T, et al. A review on pineapple leaf fibers, sisal fibers and their biocomposites[J]. Macromolecular Materials and Engineering, 2004, 289(11): 955–974. doi: 10.1002/mame.200400132

      [26]

      PRABAKAR J, SRIDHAR R S. Effect of random inclusion of sisal fibre on strength behaviour of soil[J]. Construction and Building Materials, 2002, 16(2): 123–131. doi: 10.1016/S0950-0618(02)00008-9

      [27]

      MATTONE R. Sisal fibre reinforced soil with cement or cactus pulp in bahareque technique[J]. Cement and Concrete Composites, 2005, 27(5): 611–616. http://www.onacademic.com/detail/journal_1000034581102310_b96e.html

      [28] 张军辉, 彭俊辉, 郑健龙. 路基土动态回弹模量预估进展与展望[J]. 中国公路学报, 2020, 33(1): 1–13. https://www.cnki.com.cn/Article/CJFDTOTAL-ZGGL202001001.htm

      ZHANG Jun-hui, PENG Jun-hui, ZHENG Jian-long. Progress and prospect of the prediction model of the resilient modulus of subgrade soils[J]. China Journal of Highway and Transport, 2020, 33(1): 1–13. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-ZGGL202001001.htm

      [29]

      LU S G, SUN F F, ZONG Y T. Effect of rice husk biochar and coal fly ash on some physical properties of expansive clayey soil (vertisol) [J]. Catena, 2014, 114: 37–44.

      [30] 蔡光华. 活性氧化镁碳化加固软弱土的试验与应用研究[D]. 南京: 东南大学, 2017.

      CAI Guang-hua. Experimental and Application Studies on Soft Soil Carbonated and Stabilized By Reactive Magnesia[D]. Nanjing: Southeast University, 2017. (in Chinese)

      [31] 丁建文, 洪振舜, 刘松玉. 疏浚淤泥流动固化处理与流动性试验研究[J]. 岩土力学, 2011, 32(增刊1): 280–284. https://www.cnki.com.cn/Article/CJFDTOTAL-YTLX2011S1051.htm

      DING Jian-wen, HONG Zhen-shun, LIU Song-yu. Study of flow-solidification method and fluidity test of dredged clays[J]. Rock and Soil Mechanics, 2011, 32(S1): 280–284. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YTLX2011S1051.htm

      [32]

      LI X, ZHANG L M. Characterization of dual-structure pore-size distribution of soil[J]. Canadian Geotechnical Journal, 2009, 46(2): 129–141.

      [33]

      LEE J O, CHOI H, LEE J Y. Thermal conductivity of compacted bentonite as a buffer material for a high-level radioactive waste repository[J]. Annals of Nuclear Energy, 2016, 94: 848–855.

      [34]

      LEE J H, SALGADO R, BERNAL A, et al. Shredded tires and rubber-sand as lightweight backfill[J]. Journal of Geotechnical and Geoenvironmental Engineering, 1999, 125(2): 132–141.

      [35]

      ROSHANKHAH S, GARCIA A V, SANTAMARINA J C. Thermal conductivity of sand-silt mixtures[J]. American Society of Civil Engineers, 2021(2).

    • 其他相关附件

    图(16)  /  表(1)
    计量
    • 文章访问数:  0
    • HTML全文浏览量:  0
    • PDF下载量:  0
    • 被引次数: 0
    出版历程
    • 收稿日期:  2021-11-20
    • 网络出版日期:  2022-12-13
    • 刊出日期:  2022-11-30

    目录

      /

      返回文章
      返回