Constitutive model simulation for mechanical response of anisotropic sand under different principal stress directions
-
摘要: 地下水位上升可能引发饱和松散土体边坡有效球应力降低从而诱发稳定性问题。等剪应力排水路径能够模拟饱和砂土边坡内土体单元在潜水面上升时的应力条件,但目前各向异性对于这种应力路径下土的响应的影响仍不明确。采用一个各向异性砂土弹塑性本构模型对不同主应力方向下的定轴等剪应力排水试验进行模拟,分析各向异性影响规律。该本构模型考虑了组构各向异性的演化及其对塑性模量和剪胀的影响,能够反映不同主应力方向对土体力学响应的影响。模拟结果表明,该模型能够较好地模拟不同主应力方向下饱和砂土在定轴不排水剪切和定轴等剪应力不排水条件下的响应。对于定轴等剪应力不排水应力路径,非稳定态时的平均有效应力随孔隙比和加载角度的增加而增加,不同初始组构强度对于等剪应力排水试验的结果有显著的影响。Abstract: Rising ground water level reduces the mean effective stress within ground soil and may cause stability problems for the slopes in saturated loose sand. The constant shear drained (CSD) stress path represents the stress conditions with rising phreatic surface, yet the influences of anisotropy on soil response under such stress path are still unclear. In this study, the anisotropic CycLiq model is used to simulate the CSD stress tests under different principal stress directions. Based on the original CycLiq model, the model considers the evolution of fabric anisotropy and its influences on plastic modulus and dilatancy, and can simulate the influences of different principal stress directions. The simulated results achieve good agreement with the test results for undrained shear and CSD loading under different intermediate stress coefficients and principal stress directions. For the CSD tests, the mean effective stress in instability state is observed to increase with the increasing void ratio and loading angle. The initial fabric norm is shown to have significant influences on the stress ratio at the instability state in the CSD tests.
-
-
表 1 各向异性CycLiq模型参数
Table 1 Model parameters of anisotropic CycLiq model
Go κ h dre, 1 dre, 2 dir α γd, r np nd M λe Γ Δ1 Δ2 c 100 0.008 4.0 0.7 30 0.3 30 0.05 12 2 1.2 0.008 0.761 1.35 0.8 5 -
[1] JEFFERIES M, BEEN K. Soil Liquefaction: A Critical State Approach[M]. New York: CRC press, 2015. [2] CHU J, LEONG W, LOKE W, et al. Instability of loose sand under drained conditions[J]. J Geotech Geoenviron Eng, 2012, 138(2): 207-16. doi: 10.1061/(ASCE)GT.1943-5606.0000574
[3] BRAND E. Some thoughts on rain-induced slope failures[J]. Proc 10th ICSMFE, 1981, 3: 373-6.
[4] ANDERSON S A, RIEMER M F. Collapse of saturated soil due to reduction in confinement[J]. Journal of Geotechnical Engineering, 1995, 121(2): 216-20. doi: 10.1061/(ASCE)0733-9410(1995)121:2(216)
[5] ANDERSON SCOTT A, SITAR N. Analysis of Rainfall-Induced Debris Flows [J]. Journal of Geotechnical Engineering, 1995, 121(7): 544-52. doi: 10.1061/(ASCE)0733-9410(1995)121:7(544)
[6] CHU J, LEROUEIL S, LEONG W. Unstable behaviour of sand and its implication for slope instability[J]. Canadian Geotechnical Journal, 2003, 40(5): 873-85. doi: 10.1139/t03-039
[7] LASHKARI A, KHODADADI M, BINESH S M, et al. Instability of particulate assemblies under constant shear drained stress path: DEM approach[J]. International Journal of Geomechanics, 2019, 19(6): 04019049. doi: 10.1061/(ASCE)GM.1943-5622.0001407
[8] FANNI R, REID D, FOURIE A. Effect of principal stress direction on the instability of sand under the constant shear drained stress path[J]. Géotechnique, 2022: 1-17.
[9] YANG J, LI X. State-dependent strength of sands from the perspective of unified modeling[J]. J Geotech Geoenviron Eng, 2004, 130(2): 186-98. doi: 10.1061/(ASCE)1090-0241(2004)130:2(186)
[10] GUO P. Modified direct shear test for anisotropic strength of sand[J]. J Geotech Geoenviron Eng, 2008, 134(9): 1311-8. doi: 10.1061/(ASCE)1090-0241(2008)134:9(1311)
[11] ODA M. Initial fabrics and their relations to mechanical properties of granular material[J]. Soils and Foundations, 1972, 12(1): 17-36. doi: 10.3208/sandf1960.12.17
[12] PRADHAN T B, TATSUOKA F, HORII N. Simple shear testing on sand in a torsional shear apparatus[J]. Soils and Foundations, 1988, 28(2): 95-112. doi: 10.3208/sandf1972.28.2_95
[13] TATSUOKA F, SAKAMOTO M, KAWAMURA T, et al. Strength and deformation characteristics of sand in plane strain compression at extremely low pressures[J]. Soils and Foundations, 1986, 26(1): 65-84. doi: 10.3208/sandf1972.26.65
[14] YANG Z, LI X, YANG J. Undrained anisotropy and rotational shear in granular soil[J]. Géotechnique, 2007, 57(4): 371-84. doi: 10.1680/geot.2007.57.4.371
[15] 杨仲轩, 闫珞洢, 余洋, 等. 土的组构各向异性及其本构模拟研究进展[J]. 地基处理, 2022, 4(4): 279-288. https://www.cnki.com.cn/Article/CJFDTOTAL-DJCL202204002.htm YANG Zhongxuan, YAN Luoyi, YU Yang, et al. Overview of fabric anisotropy of soils and constitutive model developments[J]. Journal of Ground Improvement, 2022, 4(4): 279-288. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-DJCL202204002.htm
[16] 童朝霞, 周少鹏, 姚仰平, 等. 测定各向异性砂土抗剪强度特性的新型直剪装置及初步应用[J]. 岩石力学与工程学报, 2012, 31(12): 2579-2584. https://www.cnki.com.cn/Article/CJFDTOTAL-YSLX201212024.htm TONG Zhaoxia, ZHOU Shaopeng, YAO Yangping, et al. An improved direct shear apparatus for shear strength of anisotropic sands and its primary application[J]. Chinese Journal of Rock Mechanics and Engineering, 2012, 31(12): 2579-2584. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YSLX201212024.htm
[17] YOSHIMINE M, ISHIHARA K, VARGAS W. Effects of principal stress direction and intermediate principal stress on undrained shear behavior of sand[J]. Soils and Foundations, 1998, 38(3): 179-88. doi: 10.3208/sandf.38.3_179
[18] NAKATA Y, HYODO M, MURATA H, et al. Flow deformation of sands subjected to principal stress rotation[J]. Soils and Foundations, 1998, 38(2): 115-28. doi: 10.3208/sandf.38.2_115
[19] FU P, DAFALIAS Y F. Study of anisotropic shear strength of granular materials using DEM simulation[J]. Int J Numer Anal Methods Geomech, 2011, 35(10): 1098-126. doi: 10.1002/nag.945
[20] GAO Z, ZHAO J, YAO Y. A generalized anisotropic failure criterion for geomaterials[J]. Int J Solids Struct, 2010, 47(22/23): 3166-85.
[21] LIAO D, YANG Z, WANG S, et al. Hypoplastic model with fabric change effect and semifluidized state for post-liquefaction cyclic behavior of sand[J]. Int J Numer Anal Methods Geomech, 2022, 46(17): 3154-77. doi: 10.1002/nag.3444
[22] WANG R, CAO W, XUE L, et al. An anisotropic plasticity model incorporating fabric evolution for monotonic and cyclic behavior of sand[J]. Acta Geotech, 2021, 16(1): 43-65. doi: 10.1007/s11440-020-00984-y
[23] 姚仰平, 唐科松. 土的各向同性化变换应力方法[J]. 力学学报, 2022, 54(6): 1651-1659, I0003. https://www.cnki.com.cn/Article/CJFDTOTAL-LXXB202206015.htm YAO Yangping, TANG Kesong. Isotropically transformed stress method for the anisotropy of soils[J]. Chinese Journal of Theoretical and Applied Mechanics, 2022, 54(6): 1651-1659, I0003. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-LXXB202206015.htm
[24] WANG R, ZHANG J M, WANG G. A unified plasticity model for large post-liquefaction shear deformation of sand[J]. Computers and Geotechnics, 2014, 59: 54-66. doi: 10.1016/j.compgeo.2014.02.008
[25] 张建民. 砂土的可逆性和不可逆性剪胀规律[J]. 岩土工程学报, 2000, 22(1): 12-17. http://cge.nhri.cn/cn/article/id/10443 ZHANG Jianmin. Reversible and irreversible dilatancy of sand[J]. Chinese Journal of Geotechnical Engineering, 2000, 22(1): 12-17. (in Chinese) http://cge.nhri.cn/cn/article/id/10443
[26] 张建民, 罗刚. 考虑可逆与不可逆剪胀的粗粒土动本构模型[J]. 岩土工程学报, 2005, 27(2): 178-184. doi: 10.3321/j.issn:1000-4548.2005.02.009 ZHANG Jianmin, LUO Gang. A new cyclic constitutive model for granular soil considering reversible and irreversible dilatancy[J]. Chinese Journal of Geotechnical Engineering, 2005, 27(2): 178-184. (in Chinese) doi: 10.3321/j.issn:1000-4548.2005.02.009
[27] 王刚, 张建民. 砂土液化大变形的弹塑性循环本构模型[J]. 岩土工程学报, 2007, 29(1): 51-59. http://cge.nhri.cn/cn/article/id/12274 WANG Gang, ZHANG Jianmin. A cyclic elasto-plastic constitutive model for evaluating large liquefaction-induced deformation of sand[J]. Chinese Journal of Geotechnical Engineering, 2007, 29(1): 51-59. (in Chinese) http://cge.nhri.cn/cn/article/id/12274
[28] RICHART F E, HALL J R, WOODS R D. Vibrations of Soils and Foundations[M]. New York: Prentice-Hall, 1970.
[29] BEEN K, JEFFERIES M G. A state parameter for sands[J]. Géotechnique, 1985, 35(2): 99-112. doi: 10.1680/geot.1985.35.2.99
[30] LI X S, WANG Y. Linear representation of steady-state line for sand[J]. J Geotech Geoenviron Eng, 1998, 124(12): 1215-1221. doi: 10.1061/(ASCE)1090-0241(1998)124:12(1215)
[31] ROSCOE K H, SCHOFIELD A N, WROTH C P. On the yielding of soils[J]. Géotechnique, 1958, 8(1): 22-53. doi: 10.1680/geot.1958.8.1.22
[32] LIU H, SONG E, LING H I. Constitutive modeling of soil-structure interface through the concept of critical state soil mechanics[J]. Mechanics Research Communications, 2006, 33(4): 515-531. doi: 10.1016/j.mechrescom.2006.01.002
[33] DAFALIAS Y F, MANZARI M T. Simple plasticity sand model accounting for fabric change effects[J]. Journal of Engineering Mechanics, 2004, 130(6): 622-634. doi: 10.1061/(ASCE)0733-9399(2004)130:6(622)
[34] 姚仰平, 张民生, 万征, 等. 基于临界状态的砂土本构模型研究[J]. 力学学报, 2018, 50(3): 589-598. https://www.cnki.com.cn/Article/CJFDTOTAL-LXXB201803015.htm YAO Yangping, ZHANG Minsheng, WAN Zheng, et al. Constitutive model for sand based on the critical state[J]. Chinese Journal of Theoretical and Applied Mechanics, 2018, 50(3): 589-598. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-LXXB201803015.htm
[35] ZHANG J M. Cyclic Critical Stress State Theory of Sand with Its Application to Geotechnical Problems[D]. Tokyo: Tokyo Institute of Technology, 1997.
[36] MIURA S, TOKI S. A sample preparation method and its effect on static and cyclic deformation-strength properties of sand[J]. Soils and Foundations, 1982, 22(1): 61-77. doi: 10.3208/sandf1972.22.61
[37] YANG Z, LI X, YANG J. Quantifying and modelling fabric anisotropy of granular soils[J]. Géotechnique, 2008, 58(4): 237-248. doi: 10.1680/geot.2008.58.4.237
[38] 叶斌, 宋思聪, 倪雪倩. 制样方法对砂土液化力学性质影响的离散元模拟[J]. 同济大学学报(自然科学版), 2022, 50(7): 998-1008. https://www.cnki.com.cn/Article/CJFDTOTAL-TJDZ202207010.htm YE Bin, SONG Sicong, NI Xueqian. Effects of sample preparation method on sand liquefaction mechanical properties with discrete element simulation[J]. Journal of Tongji University (Natural Science), 2022, 50(7): 998-1008. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-TJDZ202207010.htm
-
其他相关附件