Evolution analysis of over-consolidated state with UH model and verification of hypergravity centrifuge experiments
-
摘要: 本构模型是土力学求解强度变形问题的关键。研究揭示了剑桥模型在超临界侧强度过高、超固结状态下无法应力三维化、应力应变关系发生突变等存在的问题,分析了UH模型建立的超固结状态耦合演化机制及在弹塑性理论框架下实现的超固结状态与正常固结状态计算理论的统一,并基于三轴试验预测证明了UH模型能更加合理地描述超固结状态下土的应力应变关系。通过开展载荷板离心模型试验以及数值模拟验证可以发现,相较于剑桥模型,UH模型计算的地基土荷载变形曲线、侧压力系数分布更加准确,其本质是单元的应力应变关系更加科学、合理。研究证明UH模型的应用能显著提高超固结状态土体强度变形计算的准确性和实用性,对复杂岩土工程问题的计算求解具有重要理论价值和实践意义。Abstract: Development of a proper constitutive model is the key to solving the strength and deformation problem in soil mechanics. It is revealed that the conventional Cam-clay model would exhibit unrealistically high strength on the supercritical side and sudden changes in stress-strain relations, and it is incapable of extending the stress tensor to three dimensions at the over-consolidated state. The coupling evolution mechanism in the over-consolidated state is introduced in a state-of-the-art UH constitutive model and the unification of calculation formulas in the over-consolidated and normal-consolidated states based on the elastoplastic theory. Through comparisons with the triaxial compression test results, it is verified that the UH model can satisfactorily describe the stress-strain relations of the over-consolidated soil. The validations against supergravity tests on the vertical behaviour of a circular plate, in terms of the load-deformation curve and lateral pressure coefficient distribution of the soil, demonstrate the significant advantage of the UH model over the Cam-clay model. The essence is that the stress-strain relations of the soil element can be described in a more scientific and rational manner in the UH model. It is well proved that the UH model significantly improves the accuracy and practicability in assessing the strength and deformation problems of the over-consolidated soil, thus capturing important theoretical value and practical significance in solving complex geotechnical engineering problems.
-
致谢: 感谢浙江大学超重力研究中心孔德琼、赵宇、闫子壮、李桢懿等对离心模型试验的帮助与配合。
-
表 1 地基土本构模型参数
Table 1 Constitutive model parameters of foundation soil
参数 M υ κ λ N UH模型 0.9 0.33 0.079 0.244 2.335 剑桥模型 0.9 0.33 0.079 0.244 2.335 -
[1] ROSCOE K H, SCHOFIELD A N, WROTH C. On the yielding of soils[J]. Géotechnique, 1958, 8: 22-53. doi: 10.1680/geot.1958.8.1.22
[2] ROSCOE K H, SCHOFIELD A N, THURAIRAJAH A. Yielding of clays in states wetter than critical[J]. Géotechnique, 1963, 13(3): 211-240. doi: 10.1680/geot.1963.13.3.211
[3] SCHOFIELD A N, WROTH P. Critical State Soil Mechanics[M]. New York: McGraw-Hill, 1968.
[4] YAO Y P, HOU W, ZHOU A N. UH model: three-dimensional unified hardening model for overconsolidated clays[J]. Géotechnique, 2009, 59(5): 451-469. doi: 10.1680/geot.2007.00029
[5] YAO Y P, ZHANG K. Innovations of the UH model associated with a clue of stress-strain chain[J]. Transportation Geotechnics, 2022, 37: 100836. doi: 10.1016/j.trgeo.2022.100836
[6] YAO Y P, LIU L, LUO T. A constitutive model for granular soils[J]. Science China Technological Sciences, 2018, 61(10): 1546-1555. doi: 10.1007/s11431-017-9205-8
[7] YAO Y P, ZHOU A N. Non-isothermal unified hardening model: a thermo-elasto-plastic model for clays[J]. Géotechnique, 2013, 63(15): 1328-1345. doi: 10.1680/geot.13.P.035
[8] 姚仰平, 田雨, 周安楠, 等. 土的统一硬化函数的构造[J]. 中国科学: 技术科学, 2019, 49(1): 26-34. https://www.cnki.com.cn/Article/CJFDTOTAL-JEXK201901003.htm YAO Yangping, TIAN Yu, ZHOU Annan, et al. Unified hardening law for soils and its construction[J]. Scientia Sinica (Technologica), 2019, 49(1): 26-34. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-JEXK201901003.htm
[9] YAO Y P, SUN D A. Application of Lade's criterion to Cam-clay model[J]. Journal of Engineering Mechanics, 2000, 126(1): 112-119. doi: 10.1061/(ASCE)0733-9399(2000)126:1(112)
[10] YAO Y P, WANG N D. Transformed stress method for generalizing soil constitutive models[J]. Journal of Engineering Mechanics, 2014, 140(3): 614-629. doi: 10.1061/(ASCE)EM.1943-7889.0000685
[11] 姚仰平, 张丙印, 朱俊高. 土的基本特性、本构关系及数值模拟研究综述[J]. 土木工程学报, 2012, 45(3): 127-150. https://www.cnki.com.cn/Article/CJFDTOTAL-TMGC201203020.htm YAO Yangping, ZHANG Bingyin, ZHU Jungao. Behaviors, constitutive models and numerical simulation of soils[J]. China Civil Engineering Journal, 2012, 45(3): 127-150. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-TMGC201203020.htm
[12] 陈云敏, 马鹏程, 唐耀. 土体的本构模型和超重力物理模拟[J]. 力学学报, 2020, 52(4): 901-915. https://www.cnki.com.cn/Article/CJFDTOTAL-LXXB202004001.htm CHEN Yunmin, MA Pengcheng, TANG Yao. Constitutive models and hypergravity physical simulation of soils[J]. Chinese Journal of Theoretical and Applied Mechanics, 2020, 52(4): 901-915. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-LXXB202004001.htm
[13] 陈云敏, 韩超, 凌道盛, 等. ZJU400离心机研制及其振动台性能评价[J]. 岩土工程学报, 2011, 33(12): 1887-1894. http://cge.nhri.cn/cn/article/id/14444 CHEN Yunmin, HAN Chao, LING Daosheng, et al. Development of geotechnical centrifuge ZJU400 and performance assessment of its shaking table system[J]. Chinese Journal of Geotechnical Engineering, 2011, 33(12): 1887-1894. (in Chinese) http://cge.nhri.cn/cn/article/id/14444
[14] CHEN Y M, TANG Y, LING D S, et al. Hypergravity experiments on multiphase media evolution[J]. Science China Technological Sciences, 2022, 65(12): 2791-2808. doi: 10.1007/s11431-022-2125-x
[15] 沈珠江. 理论土力学[M]. 北京: 中国水利水电出版社, 2000. SHEN Zhujiang. Theoretical Soil Mechanics[M]. Beijing: China Water & Power Press, 2000. (in Chinese)
[16] ANTONIO G. Stress-strain and Strength Characteristics of a Low Plasticity Clay[D]. London: Imperial College London, 1982.
[17] POTTS D M, ZDRAVKOVIC L. Finite Element Analysis in Geotechnical Engineering: Theory[M]. London: Thomas Telford, 1999.
[18] YAO Y P, LU D C, ZHOU A N, et al. Generalized non-linear strength theory and transformed stress space[J]. Science in China Series E: Technological Sciences, 2004, 47(6): 691-709. doi: 10.1360/04ye0199
[19] GHANTOUS I B. Prediction of in Situ Consolidation Parameters of Boston Blue Clay[D]. Cambridge: Massachusetts Institute of Technology, 1982.
[20] CHOWDHURY E Q, NAKAI T. Consequences of the tij-concept and a new modeling approach[J]. Computers and Geotechnics, 1998, 23(3): 131-164. doi: 10.1016/S0266-352X(98)00017-2
-
其他相关附件