Advances in physical interaction mechanism between highly compacted bentonite and pore solution
-
摘要: 作为高放废物处置库的工程屏障,高压实膨润土在长期服役过程中将受到围岩地下水及其化学成分的渗入作用,膨胀性能不断衰减,最终威胁处置安全。在阐述孔隙溶液对高压实膨润土水化膨胀过程影响规律的基础上,总结了高压实膨润土与孔隙溶液物理作用机制的最新研究成果。结果表明,孔隙溶液对高压实膨润土的物理作用机制包括晶层膨胀、扩散双电层膨胀和吸附作用等3种。其中,孔隙溶液对晶层膨胀的作用与浓度有关,低浓度时表现为促进作用,高浓度时表现为抑制作用,取决于孔隙溶质吸力与临界吸力的差;孔隙溶液对扩散双电层的抑制作用是导致有效孔隙通道扩大、渗透和扩散系数增大的主要原因;pH对膨润土表面活性位点和核素水解的影响是引起吸附特性变化的主要原因,背景离子的竞争吸附作用致使膨润土对核素离子的吸附量显著减少。目前,孔隙溶液作用的参数概化、有效孔隙量化和吸附化学模型的研究仍有不足。因此,进一步优化本构模型中孔隙溶液作用的化学参数,明确不同尺度孔隙的等效量化研究,构建约束条件下压实膨润土多组分竞争吸附模型仍是今后需要深入研究的重点方向。Abstract: The swelling performance of highly compacted bentonite deteriorates due to infiltrating rock groundwater and chemical components during its long-term operation, ultimately posing a threat to disposal safety. The recent researches on the physical interaction between compacted bentonite and pore solution are reviewed based on the phenomena related to the influences of the pore solution on buffering properties. The results show that the physical mechanism of the pore solution on highly compacted bentonite includes swelling of crystal layer, swelling of diffusion double layers and adsorption effects. The effects of the pore solution on the swelling of crystal layer are related to its concentration, and they are promoted at low concentration and inhibited at high concentration, which depends on the difference between the suction and the critical suction of the poresolution. The inhibition of the pore solution on the swelling of double layers is the main factor for the enlarged pore channels, higher permeability and diffusion coefficients. The pH change and nuclide hydrolysis alter the adsorption characteristics, while the competitive background ion adsorption reduces the nuclide capacity of bentonite. The current shortcomings include parameter generalization for pore solution effects, effective porosity quantification and adsorption models. Therefore, the further optimization of chemical parameters of pore solution in the constitutive model, the clarification of the equivalent quantification of the pores at different scales, and the establishment of a multi-component competitive adsorption model under the constraint of compacted bentonite are still the key directions for the further researches in the future.
-
-
表面活性位点反应 双层模型参数(lgK) 非静电模型参数(lgK) ≡XNa⇌≡X−+Na+ -1.58 -1.58 ≡XNa+H+f≡XH+Na+ 1.50 2.10 ≡AlOH+H+f≡AlOH + 2 6.15 5.83 ≡AlOH+OH−f≡AlO + H2O -9.27 -7.02 ≡SiOH+OH−f≡SiO− + H2O -9.06 -8.75 -
[1] TAKAYAMA Y, TACHIBANA S, IIZUKA A, et al. Constitutive modeling for compacted bentonite buffer materials as unsaturated and saturated porous media[J]. Soils and Foundations, 2017, 57(1): 80-91. doi: 10.1016/j.sandf.2017.01.006
[2] LU P H, YE W M, HE Y. A constitutive model of compacted bentonite under coupled chemo-hydro-mechanical conditions based on the framework of the BExM[J]. Computers and Geotechnics, 2023, 158: 105360. doi: 10.1016/j.compgeo.2023.105360
[3] BOURG I C, BOURG A C M, SPOSITO G. Modeling diffusion and adsorption in compacted bentonite: a critical review[J]. Journal of Contaminant Hydrology, 2003, 61(1/2/3/4): 293-302.
[4] GUO G L, FALL M. Advances in modelling of hydro-mechanical processes in gas migration within saturated bentonite: a state-of-art review[J]. Engineering Geology, 2021, 287: 106123. doi: 10.1016/j.enggeo.2021.106123
[5] GUIMARãES L D, GENS A, SÁNCHEZ M, et al. A chemo-mechanical constitutive model accounting for cation exchange in expansive clays[J]. Géotechnique, 2013, 63(3): 221-234. doi: 10.1680/geot.SIP13.P.012
[6] ALONSO E E, VAUNAT J, GENS A. Modelling the mechanical behaviour of expansive clays[J]. Engineering Geology, 1999, 54(1/2): 173-183.
[7] DOMINIJANNI A, MANASSERO M, PUMA S. Coupled chemical-hydraulic-mechanical behaviour of bentonites[J]. Géotechnique, 2013, 63(3): 191-205. doi: 10.1680/geot.SIP13.P.010
[8] BENNETHUM L S, MURAD M A, CUSHMAN J H. Macroscale thermodynamics and the chemical potential for swelling porous media[J]. Transport in Porous Media, 2000, 39(2): 187-225. doi: 10.1023/A:1006661330427
[9] 徐永福. 膨胀土的水力作用机理及膨胀变形理论[J]. 岩土工程学报, 2020, 42(11): 1979-1987. doi: 10.11779/CJGE202011002 XU Yongfu. Hydraulic mechanism and swelling deformation theory of expansive soils[J]. Chinese Journal of Geotechnical Engineering, 2020, 42(11): 1979-1987. (in Chinese) doi: 10.11779/CJGE202011002
[10] RUAN K L, KOMINE H, ITO D, et al. Hydraulic conductivity and X-ray diffraction tests of unsaturated bentonites with a multi-ring and their predictions by pores distributions[J]. Engineering Geology, 2022, 306: 106738. doi: 10.1016/j.enggeo.2022.106738
[11] KOMINE H. Theoretical equations on hydraulic conductivities of bentonite-based buffer and backfill for underground disposal of radioactive wastes[J]. Journal of Geotechnical and Geoenvironmental Engineering, 2008, 134(4): 497-508. doi: 10.1061/(ASCE)1090-0241(2008)134:4(497)
[12] TORSTENFELT B, ALLARD B, KIPATSI H. Measurements of ion mobilities in clay[J]. Soil Science, 1985, 139(6): 512-516. doi: 10.1097/00010694-198506000-00006
[13] MUURINEN A, PEMTILÄ-HILTUNEN P, UUSHEIMO K. Diffusion of chloride and uranium in compacted sodium bentonite[J]. MRS Online Proceedings Library, 1988, 127(1): 743-748.
[14] TRIPATHY S, SRIDHARAN A, SCHANZ T. Swelling pressures of compacted bentonites from diffuse double layer theory[J]. Canadian Geotechnical Journal, 2004, 41(3): 437-450. doi: 10.1139/t03-096
[15] 陈龙. 复杂化学环境下膨润土膨胀变形研究[D]. 绵阳: 西南科技大学, 2021. CHEN Long. Study on the Swelling Deformation of Bentonite in Complex Chemical Environment[D]. Mianyang: Southwest University of Science and Technology, 2021. (in Chinese)
[16] 张艺东. 碱溶液及离子溶液作用下高庙子膨润土膨胀性及渗透性研究[D]. 绵阳: 西南科技大学, 2017. ZHANG Yidong. Study on the Permeability and Expansibility of Alkali Solution and Ion Solution of Gaomiaozi Bentonite[D]. Mianyang: Southwest University of Science and Technology, 2017. (in Chinese)
[17] VEGA F A, COVELO E F, ANDRADE M L. Competitive sorption and desorption of heavy metals in mine soils: influence of mine soil characteristics[J]. Journal of Colloid and Interface Science, 2006, 298(2): 582-592. doi: 10.1016/j.jcis.2006.01.012
[18] POLCARO A M, MASCIA M, PALMAS S, et al. Competitive sorption of heavy metal ions by soils[J]. Environmental Engineering Science, 2003, 20(6): 607-616. doi: 10.1089/109287503770736122
[19] 高子瑞, 陈涛, 徐永福. 盐溶液对膨润土膨胀性的影响[J]. 岩土力学, 2018, 39(1): 249-253. GAO Zirui, CHEN Tao, XU Yongfu. Effect of salt solution on swelling characteristics of bentonite[J]. Rock and Soil Mechanics, 2018, 39(1): 249-253. (in Chinese)
[20] 陈永贵, 李昆鹏, 马婧, 等. 化学作用下高庙子膨润土屏障性能演化行为[J]. 工程地质学报, 2022, 30(1): 71-82. CHEN Yonggui, LI Kunpeng, MA Jing, et al. Evolution of barrier properties for gaomiaozi bentonite under chemical effects[J]. Journal of Engineering Geology, 2022, 30(1): 71-82. (in Chinese)
[21] 马婧, 陈永贵, 刘聪, 等. 化学作用下压实膨润土膨胀力响应机制研究进展[J]. 岩土工程学报, 2023, 45(10): 2042-2051. doi: 10.11779/CJGE20220911 MA Jing, CHEN Yonggui, LIU Cong, et al. Research progress on the swelling pressures mechanisms of compacted bentonite under chemical conditions[J]. Chinese Journal of Geotechnical Engineering, 2023, 45(10): 2042-2051. (in Chinese) doi: 10.11779/CJGE20220911
[22] MITCHELL J K. Fundamentals of Soil Behavior[M]. 2nd ed. New York: Wiley, 1993.
[23] GARCÍA-ROMERO E, LORENZO A, GARCÍA-ⅥCENTE A, et al. On the structural formula of smectites: a review and new data on the influence of exchangeable cations[J]. Journal of Applied Crystallography, 2021, 54: 251-262. doi: 10.1107/S1600576720016040
[24] 李昆鹏, 陈永贵, 叶为民, 等. 高压实膨润土孔隙结构特征研究进展[J]. 岩土工程学报, 2022, 44(3): 399-408. doi: 10.11779/CJGE202203001 LI Kunpeng, CHEN Yonggui, YE Weimin, et al. Advances in studies on pore structure of highly compacted bentonite[J]. Chinese Journal of Geotechnical Engineering, 2022, 44(3): 399-408. (in Chinese) doi: 10.11779/CJGE202203001
[25] SAIYOURI N, HICHER P Y, TESSIER D. Microstructural approach and transfer water modelling in highly compacted unsaturated swelling clays[J]. Mechanics of Cohesive-Frictional Materials, 2000, 5(1): 41-60. doi: 10.1002/(SICI)1099-1484(200001)5:1<41::AID-CFM75>3.0.CO;2-N
[26] SAIYOURI N, TESSIER D, HICHER P Y. Experimental study of swelling in unsaturated compacted clays[J]. Clay Minerals, 2004, 39(4): 469-479. doi: 10.1180/0009855043940148
[27] WANG Q. Hydro-mechanical behaviour of bentonite-basedmaterials used for high-level radioactive waste disposal[D]. Paris: Ecole Des Ponts Paris Tech, 2012.
[28] KOMINE H, YASUHARA K, MURAKAMI S. Swelling characteristics of bentonites in artificial seawater[J]. Canadian Geotechnical Journal, 2009, 46(2): 177-189. doi: 10.1139/T08-120
[29] 李亚楠, 苏锐, 周志超, 等. 北山新场BS34钻孔岩样在不同温度下的水岩作用[J]. 核化学与放射化学, 2022, 44(3): 386-392. LI Yanan, SU Rui, ZHOU Zhichao, et al. Water-rock interaction of granite from borehole BS34 at different temperatures[J]. Journal of Nuclear and Radiochemistry, 2022, 44(3): 386-392. (in Chinese)
[30] LIU L N, CHEN Y G, YE W M, et al. Effects of hyperalkaline solutions on the swelling pressure of compacted Gaomiaozi (GMZ) bentonite from the viewpoint of Na+ cations and OH–anions[J]. Applied Clay Science, 2018, 161: 334-342. doi: 10.1016/j.clay.2018.04.023
[31] 梁维云, 韦昌富, 张芹, 等. 膨润土吸湿过程中膨胀力演化及水分分布特征[J]. 岩土工程学报, 2023, 45(2): 283-291. doi: 10.11779/CJGE20211496 LIANG Weiyun, WEI Changfu, ZHANG Qin, et al. Swelling pressure evolution and water distribution characteristics of bentonite during wetting process[J]. Chinese Journal of Geotechnical Engineering, 2023, 45(2): 283-291. (in Chinese) doi: 10.11779/CJGE20211496
[32] 叶为民, 刘樟荣, 崔玉军, 等. 膨润土膨胀力时程曲线的形态特征及其模拟[J]. 岩土工程学报, 2020, 42(1): 29-36. doi: 10.11779/CJGE202001003 YE Weimin, LIU Zhangrong, CUI Yujun, et al. Features and modelling of time-evolution curves of swelling pressure of bentonite[J]. Chinese Journal of Geotechnical Engineering, 2020, 42(1): 29-36. (in Chinese) doi: 10.11779/CJGE202001003
[33] PONS C H, ROUSSEAUX F, TCHOUBAR D. Utilisation du rayonnement synchrotron en diffusion Aux petits angles pour l'étude du gonflement des smectites: Ⅰ. Etude du systeme eau-montmorillonite-Na en fonction de la temperature[J]. Clay Minerals, 1981, 16(1): 23-42. doi: 10.1180/claymin.1981.016.1.02
[34] SUZUKI S, PRAYONGPHAN S, ICHIKAWA Y, et al. In situ observations of the swelling of bentonite aggregates in NaCl solution[J]. Applied Clay Science, 2005, 29(2): 89-98. doi: 10.1016/j.clay.2004.11.001
[35] CHEN Y G, DONG X X, ZHANG X D, et al. Combined thermal and saline effects on the swelling pressure of densely compacted GMZ bentonite[J]. Applied Clay Science, 2018, 166: 318-326. doi: 10.1016/j.clay.2018.10.001
[36] SUN D A, ZHANG L, LI J, et al. Evaluation and prediction of the swelling pressures of GMZ bentonites saturated with saline solution[J]. Applied Clay Science, 2015, 105/106: 207-216.
[37] KARNLAND O, OLSSON S, NILSSON U. Mineralogy and Sealing Properties of Various Bentonites and Smectite-Rich Clay Materials[R]. Stockholm: Svensk Kärnbränslehantering Ab, 2006.
[38] LEE J O, LIM J G, KANG I M, et al. Swelling pressures of compacted Ca-bentonite[J]. Engineering Geology, 2012, 129/130: 20-26.
[39] JADDA K, BAG R. Variation of swelling pressure, consolidation characteristics and hydraulic conductivity of two Indian bentonites due to electrolyte concentration[J]. Engineering Geology, 2020, 272: 105637.
[40] THYAGARAJ T, RAO S M. Osmotic swelling and osmotic consolidation behaviour of compacted expansive clay[J]. Geotechnical and Geological Engineering, 2013, 31(2): 435-445.
[41] DI MAIO C, SANTOLI L, SCHIAVONE P. Volume change behaviour of clays: the influence of mineral composition, pore fluid composition and stress state[J]. Mechanics of Materials, 2004, 36(5/6): 435-451.
[42] 项国圣, 徐永福, 陈涛, 等. 盐溶液中膨润土膨胀变形的分形模型[J]. 岩土力学, 2017, 38(1): 75-80. XIANG Guosheng, XU Yongfu, CHEN Tao, et al. Fractal model for swelling deformation of bentonite in salt solution[J]. Rock and Soil Mechanics, 2017, 38(1): 75-80. (in Chinese)
[43] 李彩霞, 李俊, 徐猛, 等. 氯盐溶液对钠基膨润土垫层膨胀性能的影响[J]. 土木与环境工程学报(中英文), 2023, 45(1): 97-104. LI Caixia, LI Jun, XU Meng, et al. Influence of chlorine salt solution on swelling properties of sodium bentonite cushion[J]. Journal of Civil and Environmental Engineering, 2023, 45(1): 97-104. (in Chinese)
[44] 李晓月, 徐永福. 盐溶液中膨润土膨胀变形的计算方法[J]. 岩土工程学报, 2019, 41(12): 2353-2359. doi: 10.11779/CJGE201912022 LI Xiaoyue, XU Yongfu. Method for calculating swelling deformation of bentonite in salt solution[J]. Chinese Journal of Geotechnical Engineering, 2019, 41(12): 2353-2359. (in Chinese) doi: 10.11779/CJGE201912022
[45] TRIPATHY S, BAG R, THOMAS H R. Effect of Stern-layer on the compressibility behaviour of bentonites[J]. Acta Geotechnica, 2014, 9(6): 1097-1109.
[46] ZHU C M, YE W M, CHEN Y G, et al. Influence of salt solutions on the swelling pressure and hydraulic conductivity of compacted GMZ01 bentonite[J]. Engineering Geology, 2013, 166: 74-80.
[47] WU T, WANG Z F, WANG H, et al. Salt effects on Re(Ⅶ) and Se(Ⅳ) diffusion in bentonite[J]. Applied Clay Science, 2017, 141: 104-110.
[48] JIN Q, SU L, MONTAVON G, et al. Surface complexation modeling of U(Ⅵ) adsorption on granite at ambient/elevated temperature: experimental and XPS study[J]. Chemical Geology, 2016, 433: 81-91.
[49] LI S C, WANG X L, HUANG Z Y, et al. Sorption–desorption hysteresis of uranium(Ⅵ) on/from GMZ bentonite[J]. Journal of Radioanalytical and Nuclear Chemistry, 2016, 310(2): 671-678.
[50] 刘福强, 叶远虑, 郭宁, 等. Eu(Ⅲ)在Na基高庙子膨润土上的吸附作用: 实验和构模研究[J]. 中国科学: 化学, 2013, 43(2): 242-252. LIU Fuqiang, YE Yuanlv, GUO Ning, et al. The adsorption of Eu(Ⅲ) on Gaomiaozi Na-bentonite: experimental and modeling study[J]. Scientia Sinica (Chimica), 2013, 43(2): 242-252. (in Chinese)
[51] LU S S, XU H, WANG M M, et al. Sorption of Eu(Ⅲ) onto Gaomiaozi bentonite by batch technique as a function of pH, ionic strength, and humic acid[J]. Journal of Radioanalytical and Nuclear Chemistry, 2012, 292(2): 889-895.
[52] CHEN Y G, ZHU C M, SUN Y H, et al. Adsorption of La(Ⅲ) onto GMZ bentonite: effect of contact time, bentonite content, pH value and ionic strength[J]. Journal of Radioanalytical and Nuclear Chemistry, 2012, 292(3): 1339-1347.
[53] SUN Z, CHEN Y G, MU X, et al. Graphene oxide-modified organic Gaomiaozi bentonite for Yb(Ⅲ) adsorption from aqueous solutions[J]. Materials Chemistry and Physics, 2021, 274: 125176.
[54] LI S C, WANG X L, HUANG Z Y, et al. Sorption and desorption of uranium(Ⅵ) on GMZ bentonite: effect of pH, ionic strength, foreign ions and humic substances[J]. Journal of Radioanalytical and Nuclear Chemistry, 2016, 308(3): 877-886.
[55] DONG Y H, LIU Z J, LI Y Y. Effect of pH, ionic strength, foreign ions and humic substances on Th(Ⅳ) sorption to GMZ bentonite studied by batch experiments[J]. Journal of Radioanalytical and Nuclear Chemistry, 2011, 289(1): 257-265.
[56] BRADBURY M H, BAEYENS B. Sorption of Eu on Na- and Ca-montmorillonites: experimental investigations and modelling with cation exchange and surface complexation[J]. Geochimica et Cosmochimica Acta, 2002, 66(13): 2325-2334.
[57] COVELO E F, VEGA F A, ANDRADE M L. Competitive sorption and desorption of heavy metals by individual soil components[J]. Journal of Hazardous Materials, 2007, 140(1/2): 308-315.
[58] GOMES P C, FONTES M P F, DA SILVA A G, et al. Selectivity sequence and competitive adsorption of heavy metals by Brazilian soils[J]. Soil Science Society of America Journal, 2001, 65(4): 1115-1121.
[59] LIU C, XU Q W, XU Y W, et al. Characterization of adsorption behaviors of U(Ⅵ) on bentonite colloids: batch experiments, kinetic evaluation and thermodynamic analysis[J]. Journal of Radioanalytical and Nuclear Chemistry, 2022, 331(1): 597-607.
[60] 杜作勇, 王彦惠, 李东瑞, 等. 膨润土对U(Ⅵ)的吸附机理研究[J]. 核技术, 2019, 42(2): 22-29. DU Zuoyong, WANG Yanhui, LI Dongrui, et al. Adsorption mechanism of U(Ⅵ) by bentonite[J]. Nuclear Techniques, 2019, 42(2): 22-29. (in Chinese)
-
期刊类型引用(8)
1. 王怀强,李孝波,王天虎,席书衡,宣雨童. 基于岩土竖向台阵开展场地地震反应研究的若干进展. 地震工程与工程振动. 2025(02): 50-63 . 百度学术
2. 范宏飞,王彦臻,陈炜昀,陈国兴,赵凯. 水平成层海床场地非线性地震反应的流-固弱耦合分析. 振动工程学报. 2025(04): 849-859 . 百度学术
3. 郭云峰. 岩土勘察中地震效应问题的研究. 科技与创新. 2023(13): 117-119+122 . 百度学术
4. 王永光,梁建文,巴振宁. 基于修正阻尼的土体非线性模型及其在Abaqus中的实现. 岩土力学. 2023(08): 2287-2296 . 百度学术
5. 陈国兴,夏高旭,王彦臻,金丹丹. 琼州海峡海床地震反应特性的一维非线性分析. 工程力学. 2022(05): 75-85 . 百度学术
6. 赵凯,夏高旭,王彦臻,赵丁凤,庄海洋,陈国兴. 土–地下结构相互作用的三维弱耦合有效应力分析法. 岩土工程学报. 2022(05): 861-869 . 本站查看
7. 阮滨,吉瀚文,王苏阳,贺鸿俊,苗雨. 基于台阵观测的基岩地震动入射波分离方法及数值验证. 岩土力学. 2022(09): 2615-2623+2642 . 百度学术
8. 陈伟庚,刘洋,王栋,岳茂,张良. 西南山区铁路沿线反倾岩质边坡地震动力响应振动台试验研究. 铁道建筑. 2021(04): 93-96 . 百度学术
其他类型引用(8)
-
其他相关附件