Size effects of small-scale model tests on bearing capacity of strip foundation
-
摘要: 开展小比尺模型试验是土力学承载力研究中的重要方法,但小比尺模型的尺寸效应会影响试验的定量结果,导致小比尺试验一般仅能用于定性研究。在饱和砂土地基中开展了20组条形基础承载力的小比尺模型试验,通过改变基础尺寸、埋深以及砂土的密实度研究承载力的变化,进而引入离散元分析方法,采用抗转动模型模拟砂土颗粒的力学行为,对条形基础承载力试验进行模拟,从微观角度揭示小比尺模型试验尺寸效应的来源和对宏观承载力的影响规律。研究结果表明,饱和砂土地基密实度与基础埋深越大,小比尺实试验的尺寸效应越明显,尺寸效应的产生是应力水平变化、破坏模式改变以及渐进破坏程度综合作用的结果。Abstract: The small-scale model test is an important method to study the bearing capacity in soil mechanics. However, the size effects of small-scale model will affect its quantitative results, so that the small-scale test can only be used for qualitative researches. In this study, 20 groups of small-scale model tests on bearing capacity of strip foundation are carried out in saturated sand foundation. The change of bearing capacity is studied by changing the foundation size, buried depth and compactness of sand. Then the discrete element analysis method is introduced, and the mechanical behavior of sand particles is simulated by rolling the resistance contact model. The bearing capacity tests on the strip foundation are simulated, and the source of the size effects of small-scale model tests and their influences on macroscopic bearing capacity are revealed from a microscopic point of view. The results show that there is a size effect in the small-scale model tests on the saturated sand foundation. The larger the foundation compactness and foundation depth, the more obvious the size effects. The size effects are the result of the combined effects of change of stress level, change of failure mode and degree of progressive failure.
-
-
表 1 土体物理力学参数
Table 1 Physical and mechanical parameters of soils
相对质量密度Gs 饱和重度γsat/(kN·m-3) 孔隙比e 相对密实度Dr/% 内摩擦角φ/(°) 2.65 19.7 0.85
0.73
0.710.32
0.65
0.7528.0
33.4
38.2表 2 试验方案
Table 2 Test programs
组次 Dr 埋深比
d/B基础形状 模型尺寸
(B×L)/m1 0.32,0.65,0.75 0,0.5,1 条形 10×100 2 0.32,0.65,0.75 0,0.5,1 条形 20×200 3 0.32,0.65,0.75 0,0.5,1 条形 50×500 4 0.32,0.65,0.75 0,0.5,1 条形 100×1000 表 3 不同地基密实度下条形基础的地基极限承载力
Table 3 Bearing capacity of strip foundations with different Dr and d/B
相对密实度
Dr基础宽度
B/m相对埋深
d/B极限承载力qu/kPa 0.32 0.01 0 24.88 0.02 0 35.23 0.05 0 65.08 0.10 0 98.00 0.65 0.01 0 45.32 0.02 0 65.28 0.05 0 80.18 0.10 0 125.32 0.75 0.01 0 69.89 0.5 97.88 1.0 149.32 0.02 0 89.92 0.5 117.90 1.0 199.28 0.05 0 109.88 0.5 140.11 1.0 250.18 0.1 0 150.24 0.5 230.05 1.0 340.32 表 4 拟合公式
Table 4 Fitting formula of
表 5 拟合公式
Table 5 Fitting formula
d/B Nqγ拟合公式 R2 0 0.981 0.5 0.972 1.0 0.965 表 6 细观参数设置
Table 6 Microparameters of DEM
颗粒
总数颗粒密度ρ/(kg·m-3) 有效模量E*/(N·m-3) 刚度比κ* 摩擦系数μ 抗转系数μr 目标孔隙比e 墙法向刚度kn/(N·m-1) 墙切向刚度ks/(N·m-1) 颗粒与墙摩擦系数μb-w 局部阻尼系数 158166(松)
146742(密)970 2.0×108 1.5 1.0 0.35 0.1,0.2 1.5×109 1.0×109 0 0.7 表 7 位移场分布变化
Table 7 Variation of displacement contour
基础宽度/m 加载阶段 A B C 0.01 0.05 0.10 表 8 力链分布变化
Table 8 Variation of force chain
基础宽度/m 加载阶段 A B C 0.01 0.05 0.10 -
[1] GOLDER H Q, FELLENIUS W, KOGLER F, et al. The ultimate bearing pressure of rectangular footings[J]. Journal of the Institution of Civil Engineers, 1941, 17(2): 161-174. doi: 10.1680/ijoti.1941.13728
[2] YAMAGUCHI H, KIMURA T, FUJII N. On the scale effect of footings in dense sand[C]// Proc 9th Int Conf Soil Mech, Tokyo, 1977.
[3] 柳飞, 杨俊杰, 刘红军, 等. 离心模型试验模拟平板载荷试验研究[J]. 岩土工程学报, 2007, 29(6): 880-886. doi: 10.3321/j.issn:1000-4548.2007.06.016 LIU Fei, YANG Junjie, LIU Hongjun, et al. Study on plate loading test by centrifugal model tests[J]. Chinese Journal of Geotechnical Engineering, 2007, 29(6): 880-886. (in Chinese) doi: 10.3321/j.issn:1000-4548.2007.06.016
[4] KUSAKABE O, YAMAGUCHI H, MORIKAGE A. Experimental an analysis on the scale effect of for circular andrectangularfootings[C]// Centrifuge 91. Rotterdam, 1991.
[5] 沈扬, 冯照雁, 邓珏, 等. 南海珊瑚砂地基承载力模型试验研究[J]. 岩土力学, 2021, 42(5): 1281-1290. https://www.cnki.com.cn/Article/CJFDTOTAL-YTLX202105009.htm SHEN Yang, FENG Zhaoyan, DENG Jue, et al. Model test on bearing capacity of coral sand foundation in the South China Sea[J]. Rock and Soil Mechanics, 2021, 42(5): 1281-1290. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YTLX202105009.htm
[6] 陈榕, 符胜男, 郝冬雪, 等. 密砂中圆形锚上拔承载力尺寸效应分析[J]. 岩土工程学报, 2019, 41(1): 78-85. doi: 10.11779/CJGE201901008 CHEN Rong, FU Shengnan, HAO Dongxue, et al. Scale effects of uplift capacity of circular anchors in dense sand[J]. Chinese Journal of Geotechnical Engineering, 2019, 41(1): 78-85. (in Chinese) doi: 10.11779/CJGE201901008
[7] FU Z Z, CHEN S S, LIU S H. Discrete element simulations of shallow plate-load tests[J]. International Journal of Geomechanics, 2016, 16(3): 040.
[8] Itasca Consulting Group Inc. PFC2D users manual (version 5.0)[R]. Minnesota: Itasca Consulting Group Inc., 2016.
[9] 徐光明, 章为民. 离心模型中的粒径效应和边界效应研究[J]. 岩土工程学报, 1996, 18(3): 80-86. doi: 10.3321/j.issn:1000-4548.1996.03.012 XU Guangming, ZHANG Weimin. Study on particle size effect and boundary effect in centrifugal model[J]. Chinese Journal of Geotechnical Engineering, 1996, 18(3): 80-86. (in Chinese) doi: 10.3321/j.issn:1000-4548.1996.03.012
[10] BOLTON M D, GUI M W, GARNIER J, et al. Centrifuge cone penetration tests in sand[J]. Géotechnique, 1999, 49(4): 543-552. doi: 10.1680/geot.1999.49.4.543
-
期刊类型引用(1)
1. 欧阳振华,刘洋,李春雷,史庆稳,李文帅,易海洋,秦洪岩,张宁博. 多次采掘扰动煤体力学特性演化规律试验研究. 煤田地质与勘探. 2024(10): 72-84 . 百度学术
其他类型引用(0)
-
其他相关附件