• Scopus数据库收录期刊
  • 中国科技核心期刊
  • 全国中文核心期刊
  • 美国工程索引(EI)收录期刊

小比尺条形基础承载力模型试验的尺寸效应研究

王一伟, 刘润, 梁超

王一伟, 刘润, 梁超. 小比尺条形基础承载力模型试验的尺寸效应研究[J]. 岩土工程学报, 2024, 46(6): 1289-1299. DOI: 10.11779/CJGE20230167
引用本文: 王一伟, 刘润, 梁超. 小比尺条形基础承载力模型试验的尺寸效应研究[J]. 岩土工程学报, 2024, 46(6): 1289-1299. DOI: 10.11779/CJGE20230167
WANG Yiwei, LIU Run, LIANG Chao. Size effects of small-scale model tests on bearing capacity of strip foundation[J]. Chinese Journal of Geotechnical Engineering, 2024, 46(6): 1289-1299. DOI: 10.11779/CJGE20230167
Citation: WANG Yiwei, LIU Run, LIANG Chao. Size effects of small-scale model tests on bearing capacity of strip foundation[J]. Chinese Journal of Geotechnical Engineering, 2024, 46(6): 1289-1299. DOI: 10.11779/CJGE20230167

小比尺条形基础承载力模型试验的尺寸效应研究  English Version

基金项目: 

国家重点研发计划项目 2022YFB2603000

国家杰出青年科学基金项目 51825904

详细信息
    作者简介:

    王一伟(1993—),男,博士,主要从事海洋土力学研究方面的工作。E-mail:1019205084@tju.edu.cn

    通讯作者:

    梁超, E-mail: liangchao@tju.edu.cn

  • 中图分类号: TU43

Size effects of small-scale model tests on bearing capacity of strip foundation

  • 摘要: 开展小比尺模型试验是土力学承载力研究中的重要方法,但小比尺模型的尺寸效应会影响试验的定量结果,导致小比尺试验一般仅能用于定性研究。在饱和砂土地基中开展了20组条形基础承载力的小比尺模型试验,通过改变基础尺寸、埋深以及砂土的密实度研究承载力的变化,进而引入离散元分析方法,采用抗转动模型模拟砂土颗粒的力学行为,对条形基础承载力试验进行模拟,从微观角度揭示小比尺模型试验尺寸效应的来源和对宏观承载力的影响规律。研究结果表明,饱和砂土地基密实度与基础埋深越大,小比尺实试验的尺寸效应越明显,尺寸效应的产生是应力水平变化、破坏模式改变以及渐进破坏程度综合作用的结果。
    Abstract: The small-scale model test is an important method to study the bearing capacity in soil mechanics. However, the size effects of small-scale model will affect its quantitative results, so that the small-scale test can only be used for qualitative researches. In this study, 20 groups of small-scale model tests on bearing capacity of strip foundation are carried out in saturated sand foundation. The change of bearing capacity is studied by changing the foundation size, buried depth and compactness of sand. Then the discrete element analysis method is introduced, and the mechanical behavior of sand particles is simulated by rolling the resistance contact model. The bearing capacity tests on the strip foundation are simulated, and the source of the size effects of small-scale model tests and their influences on macroscopic bearing capacity are revealed from a microscopic point of view. The results show that there is a size effect in the small-scale model tests on the saturated sand foundation. The larger the foundation compactness and foundation depth, the more obvious the size effects. The size effects are the result of the combined effects of change of stress level, change of failure mode and degree of progressive failure.
  • 图  1   基础尺寸效应示意图

    Figure  1.   Sketch map of scale size effects in foundation

    图  2   试验装置示意图

    Figure  2.   Test apparatus

    图  3   砂土级配曲线

    Figure  3.   Grain-size distribution curve of sand

    图  4   试验模型示意图

    Figure  4.   Test model

    图  5   条形基础荷载-沉降曲线

    Figure  5.   Load-settlement curves of strip fonudations

    图  6   不同密实度下条形基础Nγ变化图

    Figure  6.   Nγ trend of strip foundations with different Dr

    图  7   不同相对埋深下浅基础Nqγ变化图

    Figure  7.   Trend of Nqγ of strip foundations with different d/B

    图  8   Aβ,Dr的关系

    Figure  8.   Relationship among A, β and Dr

    图  9   Cζd/B的关系

    Figure  9.   Relationship among C, ζ and d/B

    图  10   抗转线性接触模型示意图

    Figure  10.   Rolling resistance linear contact model

    图  11   级配曲线与模拟模型

    Figure  11.   Grain-size distribution curves of soils and DEM model

    图  12   不同密实度下应力-应变曲线对比图

    Figure  12.   Stress-strain curves with different Dr

    图  13   地基土强度包线

    Figure  13.   Strength envelopes of soils

    图  14   地基模型与加载速度对承载力影响

    Figure  14.   DEM model and influences of loading rate on bearing capacity

    图  15   加载速度验证

    Figure  15.   Verification of loading rate

    图  16   模拟荷载-沉降曲线

    Figure  16.   Load-settlement curves of simulation

    图  17   尺寸效应对比图

    Figure  17.   Comparsion of size effects

    图  18   尺寸效应对比图

    Figure  18.   Comparsion of size effect

    图  19   测量圆布置

    Figure  19.   Distribution of measuring circles

    图  20   应力路径

    Figure  20.   Stress paths

    图  21   不同宽度基础应力比变化

    Figure  21.   Variation of stress ratio of foundation with different B

    图  22   不同深度土体中球应力分布

    Figure  22.   Horizontal distribution of spherical stress at different depths

    表  1   土体物理力学参数

    Table  1   Physical and mechanical parameters of soils

    相对质量密度Gs 饱和重度γsat/(kN·m-3) 孔隙比e 相对密实度Dr/% 内摩擦角φ/(°)
    2.65 19.7 0.85
    0.73
    0.71
    0.32
    0.65
    0.75
    28.0
    33.4
    38.2
    下载: 导出CSV

    表  2   试验方案

    Table  2   Test programs

    组次 Dr 埋深比
    d/B
    基础形状 模型尺寸
    (B×L)/m
    1 0.32,0.65,0.75 0,0.5,1 条形 10×100
    2 0.32,0.65,0.75 0,0.5,1 条形 20×200
    3 0.32,0.65,0.75 0,0.5,1 条形 50×500
    4 0.32,0.65,0.75 0,0.5,1 条形 100×1000
    下载: 导出CSV

    表  3   不同地基密实度下条形基础的地基极限承载力

    Table  3   Bearing capacity of strip foundations with different Dr and d/B

    相对密实度
    Dr
    基础宽度
    B/m
    相对埋深
    d/B
    极限承载力qu/kPa
    0.32 0.01 0 24.88
    0.02 0 35.23
    0.05 0 65.08
    0.10 0 98.00
    0.65 0.01 0 45.32
    0.02 0 65.28
    0.05 0 80.18
    0.10 0 125.32
    0.75 0.01 0 69.89
    0.5 97.88
    1.0 149.32
    0.02 0 89.92
    0.5 117.90
    1.0 199.28
    0.05 0 109.88
    0.5 140.11
    1.0 250.18
    0.1 0 150.24
    0.5 230.05
    1.0 340.32
    下载: 导出CSV

    表  4   拟合公式

    Table  4   Fitting formula of Nγ

    Dr N拟合公式 R2
    0.32 Nγ=30(γB/pa)0.41 0.997
    0.51 Nγ=32(γB/pa)0.44 [2] 0.966
    0.65 Nγ=36(γB/pa)0.47 0.975
    0.75 Nγ=40(γB/pa)0.5 0.981
    0.90 Nγ=54(γB/pa)0.58[4] 0.957
    下载: 导出CSV

    表  5   拟合公式

    Table  5   Fitting formula Nqγ

    d/B N拟合公式 R2
    0 Nqγ=40(γB/pa)0.5 0.981
    0.5 Nqγ=43(γB/pa)0.53 0.972
    1.0 Nqγ=50(γB/pa)0.6 0.965
    下载: 导出CSV

    表  6   细观参数设置

    Table  6   Microparameters of DEM

    颗粒
    总数
    颗粒密度ρ/(kg·m-3) 有效模量E*/(N·m-3) 刚度比κ* 摩擦系数μ 抗转系数μr 目标孔隙比e 墙法向刚度kn/(N·m-1) 墙切向刚度ks/(N·m-1) 颗粒与墙摩擦系数μb-w 局部阻尼系数
    158166(松)
    146742(密)
    970 2.0×108 1.5 1.0 0.35 0.1,0.2 1.5×109 1.0×109 0 0.7
    下载: 导出CSV

    表  7   位移场分布变化

    Table  7   Variation of displacement contour

    基础宽度/m 加载阶段
    A B C
    0.01
    0.05
    0.10
    下载: 导出CSV

    表  8   力链分布变化

    Table  8   Variation of force chain

    基础宽度/m 加载阶段
    A B C
    0.01
    0.05
    0.10
    下载: 导出CSV
  • [1]

    GOLDER H Q, FELLENIUS W, KOGLER F, et al. The ultimate bearing pressure of rectangular footings[J]. Journal of the Institution of Civil Engineers, 1941, 17(2): 161-174. doi: 10.1680/ijoti.1941.13728

    [2]

    YAMAGUCHI H, KIMURA T, FUJII N. On the scale effect of footings in dense sand[C]// Proc 9th Int Conf Soil Mech, Tokyo, 1977.

    [3] 柳飞, 杨俊杰, 刘红军, 等. 离心模型试验模拟平板载荷试验研究[J]. 岩土工程学报, 2007, 29(6): 880-886. doi: 10.3321/j.issn:1000-4548.2007.06.016

    LIU Fei, YANG Junjie, LIU Hongjun, et al. Study on plate loading test by centrifugal model tests[J]. Chinese Journal of Geotechnical Engineering, 2007, 29(6): 880-886. (in Chinese) doi: 10.3321/j.issn:1000-4548.2007.06.016

    [4]

    KUSAKABE O, YAMAGUCHI H, MORIKAGE A. Experimental an analysis on the scale effect of Nγ for circular andrectangularfootings[C]// Centrifuge 91. Rotterdam, 1991.

    [5] 沈扬, 冯照雁, 邓珏, 等. 南海珊瑚砂地基承载力模型试验研究[J]. 岩土力学, 2021, 42(5): 1281-1290. https://www.cnki.com.cn/Article/CJFDTOTAL-YTLX202105009.htm

    SHEN Yang, FENG Zhaoyan, DENG Jue, et al. Model test on bearing capacity of coral sand foundation in the South China Sea[J]. Rock and Soil Mechanics, 2021, 42(5): 1281-1290. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YTLX202105009.htm

    [6] 陈榕, 符胜男, 郝冬雪, 等. 密砂中圆形锚上拔承载力尺寸效应分析[J]. 岩土工程学报, 2019, 41(1): 78-85. doi: 10.11779/CJGE201901008

    CHEN Rong, FU Shengnan, HAO Dongxue, et al. Scale effects of uplift capacity of circular anchors in dense sand[J]. Chinese Journal of Geotechnical Engineering, 2019, 41(1): 78-85. (in Chinese) doi: 10.11779/CJGE201901008

    [7]

    FU Z Z, CHEN S S, LIU S H. Discrete element simulations of shallow plate-load tests[J]. International Journal of Geomechanics, 2016, 16(3): 040.

    [8]

    Itasca Consulting Group Inc. PFC2D users manual (version 5.0)[R]. Minnesota: Itasca Consulting Group Inc., 2016.

    [9] 徐光明, 章为民. 离心模型中的粒径效应和边界效应研究[J]. 岩土工程学报, 1996, 18(3): 80-86. doi: 10.3321/j.issn:1000-4548.1996.03.012

    XU Guangming, ZHANG Weimin. Study on particle size effect and boundary effect in centrifugal model[J]. Chinese Journal of Geotechnical Engineering, 1996, 18(3): 80-86. (in Chinese) doi: 10.3321/j.issn:1000-4548.1996.03.012

    [10]

    BOLTON M D, GUI M W, GARNIER J, et al. Centrifuge cone penetration tests in sand[J]. Géotechnique, 1999, 49(4): 543-552. doi: 10.1680/geot.1999.49.4.543

  • 期刊类型引用(1)

    1. 欧阳振华,刘洋,李春雷,史庆稳,李文帅,易海洋,秦洪岩,张宁博. 多次采掘扰动煤体力学特性演化规律试验研究. 煤田地质与勘探. 2024(10): 72-84 . 百度学术

    其他类型引用(0)

图(22)  /  表(8)
计量
  • 文章访问数:  538
  • HTML全文浏览量:  70
  • PDF下载量:  115
  • 被引次数: 1
出版历程
  • 收稿日期:  2023-02-26
  • 网络出版日期:  2023-09-21
  • 刊出日期:  2024-05-31

目录

    /

    返回文章
    返回