• 全国中文核心期刊
  • 中国科技核心期刊
  • 美国工程索引(EI)收录期刊
  • Scopus数据库收录期刊

软-硬互层岩体节理峰前循环剪切疲劳损伤机理研究

许彬, 刘新荣, 周小涵, 韩亚峰, 刘俊, 谢应坤, 邓志云

许彬, 刘新荣, 周小涵, 韩亚峰, 刘俊, 谢应坤, 邓志云. 软-硬互层岩体节理峰前循环剪切疲劳损伤机理研究[J]. 岩土工程学报, 2024, 46(1): 90-100. DOI: 10.11779/CJGE20221056
引用本文: 许彬, 刘新荣, 周小涵, 韩亚峰, 刘俊, 谢应坤, 邓志云. 软-硬互层岩体节理峰前循环剪切疲劳损伤机理研究[J]. 岩土工程学报, 2024, 46(1): 90-100. DOI: 10.11779/CJGE20221056
XU Bin, LIU Xinrong, ZHOU Xiaohan, HAN Yafeng, LIU Jun, XIE Yingkun, DENG Zhiyun. Fatigue damage mechanism of soft-hard interbedded rock joints subjected to pre-peak cyclic shear loading[J]. Chinese Journal of Geotechnical Engineering, 2024, 46(1): 90-100. DOI: 10.11779/CJGE20221056
Citation: XU Bin, LIU Xinrong, ZHOU Xiaohan, HAN Yafeng, LIU Jun, XIE Yingkun, DENG Zhiyun. Fatigue damage mechanism of soft-hard interbedded rock joints subjected to pre-peak cyclic shear loading[J]. Chinese Journal of Geotechnical Engineering, 2024, 46(1): 90-100. DOI: 10.11779/CJGE20221056

软-硬互层岩体节理峰前循环剪切疲劳损伤机理研究  English Version

基金项目: 

水利水运工程教育部重点实验室开放基金项目 SLK2023A03

中国博士后科学基金项目 2023M730432

重庆市博士后特别资助项目 2022CQBSHTB1010

重庆市博士后科学基金项目 CSTB2023NSCQBHX0223

重庆市教委科学技术研究项目 KJQN202300744

详细信息
    作者简介:

    许彬(1993—),男,博士后,主要从事岩土工程等方面的科研工作。E-mail:geotechnicale2016@163.com

    通讯作者:

    刘新荣, E-mail: liuxrong@126.com

  • 中图分类号: TU45

Fatigue damage mechanism of soft-hard interbedded rock joints subjected to pre-peak cyclic shear loading

  • 摘要: 三峡库区频发微小地震下岩体节理循环剪切疲劳损伤对边坡动力稳定性具有重要影响。通过室内峰前循环剪切试验和PFC2D细观数值计算,研究了考虑一阶起伏角、含水率、剪切速率、剪切幅度、法向应力及循环剪切次数影响的软-硬互层岩体节理宏细观疲劳损伤机理。研究表明:①岩体节理剪切应力-剪切位移曲线历经初始非线性压剪变形、近似线弹性压剪变形、循环剪切疲劳损伤变形、应力缓升压剪变形、应力陡升压剪变形及应力脆性跌落压剪变形六个演化阶段。②岩体节理峰值(残余)剪切强度和疲劳剪切(法向)位移在相同一阶起伏角、含水率、剪切速率、剪切幅度或法向应力下随循环剪切次增多而分别降低和增大;且其在相同循环剪切次数下随一阶起伏角或法向应力变大而分别增大和降低,而随含水率、剪切速率或剪切幅度变大则分别降低和增大。③宏细观结果总体上吻合较好,且岩体节理细观剪切疲劳损伤裂纹数量随剪切位移变化呈前期微增-陡增、中期缓增及后期陡增-缓增-陡增的发展特征,而其随循环剪切次数变化则呈前期陡增和后期缓增的发展特征。④岩体节理宏细观剪切疲劳损伤典型演化过程可概述为压密-起裂破坏、循环错动-贯通破坏及分离-啃断破坏3个渐进性发展阶段,且宏细观剪切疲劳损伤裂纹近似呈“倒U形”密集分布于岩体节理附近。
    Abstract: The cyclic shear fatigue damage of rock joints under frequent micro-earthquakes in the Three Gorges Reservoir area has an key impact on the dynamic stability of slopes. The macro-meso fatigue damage mechanism of soft-hard interbedded rock joints is studied via the laboratory pre-peak cyclic shear tests and PFC2D meso numerical calculation considering the effects of the first-order asperity angle, moisture content, shear rate, shear amplitude, normal stress and cyclic shear number. The results show that: (1) The curve of shear stress versus shear displacement of rock joints experiences six evolution stages, i.e., initial nonlinear compression-shear deformation, approximate linear elastic compression-shear deformation, cyclic shear fatigue damage deformation, compression-shear deformation with slowly rising stress, compression-shear deformation with sharply rising stress and compression-shear deformation with brittle stress drop. (2) Under the same first-order asperity angle, moisture content, shear rate, shear amplitude or normal stress, the peak (residual) shear strength and cumulative shear (normal) displacement of rock joints decrease and increase with the increase of the cyclic shear number, respectively. Under the same cyclic shear number, they increase and decrease with the increase of the first-order asperity angle or normal stress, respectively. Meanwhile, they decrease and increase with the increase of the moisture content, shear rate or shear amplitude, respectively. (3) The macro-meso results are in good agreement on the whole. The number of meso shear fatigue damage cracks of rock joints exhibits the development characteristics of slight increase-steep increase, slow increase and steep increase-slow increase-steep increase in the early, middle and late stages, respectively, with the change of shear displacement; and it shows the development characteristics of steep increase and slow increase in the early and late stages, respectively, with the change of cyclic shear number. (4) The typical evolution process of macro-meso shear fatigue damage of rock joints can be described as three progressive development stages, i.e., compaction-crack initiation failure, cyclic dislocation-penetration failure and separation-gnawing failure, and the macro-meso shear fatigue damage cracks are densely distributed near the rock joints in an approximate inverted U-shape.
  • 图  1   库区现场调研、取样及材料物理力学参数测定

    Figure  1.   Field investigation, sampling and determination of physical- mechanical parameters of materials in reservoir area

    图  2   试验原理及软-硬互层岩体节理设计与加工

    Figure  2.   Test principle and design and processing of soft-hard interbedded rock joints

    图  3   试验设备及加载流程

    Figure  3.   Test equipments and loading process

    图  4   细观计算模型

    Figure  4.   Meso calculation model

    图  5   宏细观结果对比

    Figure  5.   Comparison of macro-meso results

    图  6   软-硬互层岩体节理剪切应力-剪切位移曲线

    Figure  6.   Curves of shear stress versus shear displacement of soft-hard interbedded rock joints

    图  7   各因素对软-硬互层岩体节理剪切疲劳损伤机理影响曲线

    Figure  7.   Influence curves of various factors on shear fatigue damage mechanism of soft-hard interbedded rock joints

    图  8   软-硬互层岩体节理剪切疲劳损伤裂纹数量变化曲线

    Figure  8.   Variation curves of shear fatigue damage crack number of soft-hard interbedded rock joints

    图  9   软-硬互层岩体节理宏观剪切疲劳损伤演化过程及破坏形态

    Figure  9.   Macro-shear fatigue damage evolution process and failure morphology of soft-hard interbedded rock joints

    图  10   软-硬互层岩体节理细观剪切疲劳损伤演化过程及颗粒分布特征

    Figure  10.   Meso shear fatigue damage evolution process and particle distribution characteristics of soft-hard interbedded rock joints

    图  11   软-硬互层岩体节理宏细观剪切疲劳损伤退化机理统一概化描述

    Figure  11.   Generalized description of macro-meso shear fatigue damage mechanism of soft-hard interbedded rock joints

    表  1   材料物理力学参数

    Table  1   Physical-mechanical parameters of materials

    类别 含水率/% 密度/(g·cm-3) 抗压强度/MPa 弹性模量/MPa 泊松比 黏聚力/kPa 内摩擦角/(°)
    软层 5.0 1.55 1.33 106.43 0.30 118.33 30.13
    10.0 1.69 1.13 97.49 0.28 107.28 29.34
    15.0 1.74 0.92 88.74 0.27 99.86 27.19
    硬层 2.65 57.26 6600 0.24 5260 44.53
    下载: 导出CSV

    表  2   峰前循环剪切试验工况

    Table  2   Working conditions of pre-peak cyclic shear tests

    工况编号 一(二)阶起伏角/(°) 含水率/% 剪切速率/(kN·s-1) 剪切幅度/% 法向应力/MPa
    #1 30(45) 10.0 1.5 50τp 0.3
    #2 45(45) 10.0 1.5 50τp 0.3
    #3 60(45) 10.0 1.5 50τp 0.3
    #4 45(45) 5.0 1.5 50τp 0.3
    #5 45(45) 15.0 1.5 50τp 0.3
    #6 45(45) 10.0 1.5 50τp 0.4
    #7 45(45) 10.0 1.5 50τp 0.5
    #8 45(45) 10.0 0.5 50τp 0.3
    #9 45(45) 10.0 1.0 50τp 0.3
    #10 45(45) 10.0 1.5 30τp 0.3
    #11 45(45) 10.0 1.5 40τp 0.3
    下载: 导出CSV

    表  3   细观物理力学参数

    Table  3   Meso physical-mechanical parameters

    圆形颗粒 光滑节理 平行键
    摩擦系数 0.6 键合模式 1 半径乘子 1.0
    密度/(kg·m-3) 2750 剪胀角/(°) 0 剪切强度/MPa 62.5
    最大半径/mm 0.54 摩擦系数 0.5 法向强度/MPa 48.5
    弹性模量/GPa 12 拉伸强度/MPa 0 弹性模量/GPa 25
    法向与切向刚度比 1.5 剪切刚度/(GPa·m-1) 80 法向与切向刚度比 2.5
    最大半径与最小半径比 1.42 法向刚度/(GPa·m-1) 80 剪切和法向强度标准差/MPa ±5
    下载: 导出CSV
  • [1]

    LIU X R, KOU M M, LU Y M, et al. An experimental investigation on the shear mechanism of fatigue damage in rock joints under pre-peak cyclic loading condition[J]. International Journal of Fatigue, 2018, 106: 175-184. doi: 10.1016/j.ijfatigue.2017.10.007

    [2] 刘永权. 频发微震下库区顺层岩质边坡累积损伤演化机理及稳定性研究[D]. 重庆: 重庆大学, 2017.

    LIU Yongquan. Study on cumulative damage evolution mechanism and stability of bedding rock slope in reservoir area under frequent microseismic[D]. Chongqing: Chongqing University, 2017. (in Chinese)

    [3] 葛修润. 岩体中节理面、软弱夹层等的力学性质和模拟分析方法(一)[J]. 岩土力学, 1979(1): 54-75.

    GE Xiurun. The mechanical. behaviors and analog analytical method of joints and weak intercalations in rock mass(Ⅰ)[J]. Rock and Soil Mechanics, 1979(1): 54-75. (in Chinese)

    [4]

    JAFARI M K, AMINI HOSSEINI K, PELLET F, et al. Evaluation of shear strength of rock joints subjected to cyclic loading[J]. Soil Dynamics and Earthquake Engineering, 2003, 23(7): 619-630. doi: 10.1016/S0267-7261(03)00063-0

    [5] 许江, 瞿佳美, 刘义鑫, 等. 循环剪切荷载作用下充填物对结构面剪切特性影响试验研究[J]. 岩土力学, 2019, 40(5): 1627-1637.

    XU Jiang, QU Jiamei, LIU Yixin, et al. Influence of filling material on the behavior of joints under cyclic shear loading[J]. Rock and Soil Mechanics, 2019, 40(5): 1627-1637. (in Chinese)

    [6]

    NIKTABAR S M, RAO K S, SHRIVASTAVA A K. Effect of rock joint roughness on its cyclic shear behavior[J]. Journal of Rock Mechanics and Geotechnical Engineering, 2017, 9(6): 1071-1084. doi: 10.1016/j.jrmge.2017.09.001

    [7]

    PATTON F D. Multiple models of shear failure in rock[C]//Proceedings of the 1st Congress of the International Society of Rock Mechanics. Portugal, 1966.

    [8]

    BARTON N. Review of a new shear-strength criterion for rock joints[J]. Engineering Geology, 1973, 7(4): 287-332. doi: 10.1016/0013-7952(73)90013-6

    [9]

    LEE H S, PARK Y J, CHO T F, et al. Influence of asperity degradation on the mechanical behavior of rough rock joints under cyclic shear loading[J]. International Journal of Rock Mechanics and Mining Sciences, 2001, 38(7): 967-980. doi: 10.1016/S1365-1609(01)00060-0

    [10] 李海波, 蒋会军, 赵坚, 等. 动荷载作用下岩体工程安全的几个问题[J]. 岩石力学与工程学报, 2003, 22(11): 1887-1891. doi: 10.3321/j.issn:1000-6915.2003.11.028

    LI Haibo, JIANG Huijun, ZHAO Jian, et al. Some problems about safty analysis of rock engeering under dynamic load[J]. Chinese Journal of Rock Mechanics and Engineering, 2003, 22(11): 1887-1891. (in Chinese) doi: 10.3321/j.issn:1000-6915.2003.11.028

    [11]

    XU B, LIU X R, ZHOU X H, et al. Investigation on the macro-meso fatigue damage mechanism of rock joints with multiscale asperities under pre-peak cyclic shear loading[J]. Soil Dynamics and Earthquake Engineering, 2021, 151: 106958. doi: 10.1016/j.soildyn.2021.106958

    [12] 朱赛楠, 殷跃平, 李滨. 二叠系炭质页岩软弱夹层剪切蠕变特性研究[J]. 岩土力学, 2019, 40(4): 1377-1386.

    ZHU Sainan, YIN Yueping, LI Bin. Shear creep behavior of soft interlayer in Permian carbonaceous shale[J]. Rock and Soil Mechanics, 2019, 40(4): 1377-1386. (in Chinese)

    [13] 刘新荣, 许彬, 刘永权, 等. 频发微小地震下顺层岩质边坡累积损伤及稳定性分析[J]. 岩土工程学报, 2020, 42(4): 632-641. doi: 10.11779/CJGE202004005

    LIU Xinrong, XU Bin, LIU Yongquan, et al. Cumulative damage and stability analysis of bedding rock slope under frequent microseisms[J]. Chinese Journal of Geotechnical Engineering, 2020, 42(4): 632-641. (in Chinese) doi: 10.11779/CJGE202004005

    [14]

    YOON J. Application of experimental design and optimization to PFC model calibration in uniaxial compression simulation[J]. International Journal of Rock Mechanics and Mining Sciences, 2007, 44(6): 871-889. doi: 10.1016/j.ijrmms.2007.01.004

  • 期刊类型引用(1)

    1. 谢福星. 地面充填钻孔钻进过程应力-位移演化规律数值模拟研究. 建井技术. 2024(04): 1-6 . 百度学术

    其他类型引用(3)

图(11)  /  表(3)
计量
  • 文章访问数:  362
  • HTML全文浏览量:  78
  • PDF下载量:  148
  • 被引次数: 4
出版历程
  • 收稿日期:  2022-08-24
  • 网络出版日期:  2024-01-08
  • 刊出日期:  2023-12-31

目录

    /

    返回文章
    返回