• Scopus数据库收录期刊
  • 中国科技核心期刊
  • 全国中文核心期刊
  • 美国工程索引(EI)收录期刊

地下结构地震响应分析的高效混合模拟方法

禹海涛, 王治坤

禹海涛, 王治坤. 地下结构地震响应分析的高效混合模拟方法[J]. 岩土工程学报, 2024, 46(1): 45-53. DOI: 10.11779/CJGE20221240
引用本文: 禹海涛, 王治坤. 地下结构地震响应分析的高效混合模拟方法[J]. 岩土工程学报, 2024, 46(1): 45-53. DOI: 10.11779/CJGE20221240
YU Haitao, WANG Zhikun. Efficient hybrid simulation method for seismic response analysis of underground structures[J]. Chinese Journal of Geotechnical Engineering, 2024, 46(1): 45-53. DOI: 10.11779/CJGE20221240
Citation: YU Haitao, WANG Zhikun. Efficient hybrid simulation method for seismic response analysis of underground structures[J]. Chinese Journal of Geotechnical Engineering, 2024, 46(1): 45-53. DOI: 10.11779/CJGE20221240

地下结构地震响应分析的高效混合模拟方法  English Version

基金项目: 

国家自然科学基金项目 42177134

国家自然科学基金项目 41922059

中央高校基本科研业务费专项资金项目 

详细信息
    作者简介:

    禹海涛(1983—),男,博士,教授,主要从事地下结构防灾减灾方面的研究工作。E-mail: yuhaitao@tongji.edu.cn

  • 中图分类号: TU435

Efficient hybrid simulation method for seismic response analysis of underground structures

  • 摘要: 数值模拟是地下结构抗震分析的重要手段之一,然而地震动输入及边界效应、模型尺度规模等因素均会影响数值模拟的计算精度和效率,并且存在计算尺度、计算时间、计算精度之间的矛盾,因此如何高效、精确地模拟地下结构与地层相互作用体系的地震响应仍是亟待解决的关键问题。基于区域缩减法(DRM)将边界元和有限元相融合的核心思想,旨在建立能够合理模拟地下结构-地层系统地震响应特征的高效混合分析方法。首先将地下结构-地层整体模型划分为近场地层-结构内域子模型和远场地层外域子模型,通过构造重合节点保证内域-外域耦合边界处的位移连续性;其次,基于边界元求解外域自由场或地形影响下的非自由场地震动特征,并采用DRM构造矩阵方程将外域动力响应转化为等效地震荷载,可以在保证地震动合理输入的前提下极大地缩减外域模型尺寸,进而实现对内域中地下结构地震响应的快速参数化分析;最后,设计了两组典型算例以检验该方法的可靠性和高效性。结果表明:对于无地形影响下的双线隧道地震响应模拟,通过与远置边界参考解对比验证了方法的有效性;对于受地形条件影响下的双线隧道地震响应模拟,本方法在保证精度要求的基础上极大缩减了包括地形在内的外域模型范围,相比远置边界法和传统黏弹性法,可使计算模型尺度分别缩减97%和83%,计算时间减少72%和58%。此外,该方法还可推广到斜入射地震动作用下地下结构的动力响应分析。
    Abstract: The numerical simulation is critical for the seismic analysis of underground structures. However, its accuracy and efficiency are affected by the factors such as input of ground motion, boundary effect, model scale, which leads to the incompatibility among computational scale, time and accuracy. How to efficiently and accurately simulate the seismic response of the underground structure-ground interaction system is still an open question. A novel hybrid boundary element-finite element method in the framework of the domain reduction method (DRM) is proposed to efficiently simulate the seismic response characteristics of the subsurface structure-strata system. First, the overall subsurface structure-stratum model is divided into the inner domain sub-model of the near-field stratum structure and the outer domain sub-model of the far-field stratum, in which the displacement continuity at the inner-outer domain coupling boundary is ensured by overlapping nodes. Second, the non-free field vibration characteristics under the influences of free field and topography in the outer domain are solved by the boundary element method, and the dynamic response in the outer domain is converted into the equivalent seismic load by the DRM. The method greatly reduces the size of the outer domain, ensures the reasonable input of ground vibration, and realizes the rapid parametric analysis of the seismic response of subsurface structures in the inner domain. Further, two typical cases are designed to test the reliability and efficiency of the method. In the case of a two-line tunnel without the influences of topography, the accuracy of the method is validated by comparison with the reference solution. In another case of a two-line tunnel under the influences of terrain conditions, the numerical results show that compared with that of the remote boundary method and the traditional viscoelastic method, the computational cost is reduced by about 72% and 58%, respectively, and the computational scale is reduced by about 97% and 83%, respectively. In addition, the proposed method can be extended to the dynamic response analysis of subsurface structures under the action of oblique incident ground shaking.
  • 图  1   计算模型

    Figure  1.   Computational model

    图  2   外域BEM模型

    Figure  2.   BEM model for outer domain

    图  3   内域FEM模型

    Figure  3.   FEM model for inner domain

    图  4   数值方法实施

    Figure  4.   Implementation of numerical method

    图  5   混合方法单元节点分布

    Figure  5.   Element node distribution of hybrid method

    图  6   Chuetsu波加速度和位移时程曲线

    Figure  6.   Time-history curves of accelerations and displacement of Chuetsu waves

    图  7   标准工况双线隧道

    Figure  7.   Two tunnels under standard conditions

    图  8   远置边界最小尺寸验证

    Figure  8.   Validation of minimum size of far boundary

    图  9   Ricker地震动下位移时程

    Figure  9.   Time histories of displacement from Ricker waves

    图  10   Chuetsu地震动下位移时程曲线

    Figure  10.   Time histories of displacement from Chuetsu waves

    图  11   河谷地形双线隧道

    Figure  11.   Two tunnels near river valley

    图  12   Ricker波入射下观测点C处的位移时程

    Figure  12.   Time histories of displacement at observation point C from Ricker waves

    图  13   Chuetsu波入射下观测点C处的位移时程

    Figure  13.   Time histories of displacement at observation point C from Chuetsu waves

    图  14   Chuetsu不同角度入射下观测点C处的位移时程

    Figure  14.   Time histories of displacement at observation point C under different incident angles from Chuetsu waves

    图  15   Chuetsu不同角度入射下观测点D处的位移时程

    Figure  15.   Time histories of displacement at observation point D under different incident angles from Chuetsu waves

    表  1   地层和衬砌的材料参数

    Table  1   Material parameters of strata and linings

    材料参数 弹性模量/MPa 泊松比 密度/(kg·m-3)
    衬砌 32500 0.20 2500
    地层 100 0.25 2000
    下载: 导出CSV

    表  2   计算模型和耗时

    Table  2   Computational models and computational time

    方法 单元数量 计算时间/s
    远置边界 64089 3460
    黏弹性边界 13218 1928
    本文方法 5199 826
    下载: 导出CSV
  • [1]

    TSINIDIS G, DE SILVA F, ANASTASOPOULOS I, et al. Seismic behaviour of tunnels: from experiments to analysis[J]. Tunnelling and Underground Space Technology, 2020, 99: 103334. doi: 10.1016/j.tust.2020.103334

    [2] 王国波, 彭祥军, 郝朋飞, 等. 近距离地下穿越结构地震响应研究综述[J]. 岩土工程学报, 2019, 41(11): 2026-2036. doi: 10.11779/CJGE201911007

    WANG Guobo, PENG Xiangjun, HAO Pengfei, et al. Review of researches on seismic response of close underground crossing structures[J]. Chinese Journal of Geotechnical Engineering, 2019, 41(11): 2026-2036. (in Chinese) doi: 10.11779/CJGE201911007

    [3] 刘晶波, 宝鑫, 谭辉, 等. 土-结构动力相互作用分析中基于内部子结构的地震波动输入方法[J]. 土木工程学报, 2020, 53(8): 87-96.

    LIU Jingbo, BAO Xin, TAN Hui, et al. Seismic wave input method for soil-structure dynamic interaction analysis based on internal substructure[J]. China Civil Engineering Journal, 2020, 53(8): 87-96. (in Chinese)

    [4] 金丹丹, 陈国兴, 董菲蕃. 多地貌单元复合场地非线性地震效应特征二维分析[J]. 岩土力学, 2014, 35(6): 1818-1825.

    JIN Dandan, CHEN Guoxing, DONG Feifan. 2D analysis of nonlinear seismic effect characteristics of multi-geomorphic composite site[J]. Rock and Soil Mechanics, 2014, 35(6): 1818-1825. (in Chinese)

    [5] 刘晶波, 谷音, 杜义欣. 一致黏弹性人工边界及黏弹性边界单元[J]. 岩土工程学报, 2006, 28(9): 1070-1075. http://cge.nhri.cn/cn/article/id/12156

    LIU Jingbo, GU Yin, DU Yixin. Consistent viscous-spring artificial boundaries and viscous-spring boundary elements[J]. Chinese Journal of Geotechnical Engineering, 2006, 28(9): 1070-1075. (in Chinese) http://cge.nhri.cn/cn/article/id/12156

    [6] 谭辉. 土-结构动力相互作用分析中地震波输入方法研究及应用[D]. 北京: 清华大学, 2018.

    TAN Hui. Research and Application of the Seismic Wave Input Method for Soil-Structure Dynamic Interaction Analysis[D]. Beijing: Tsinghua University, 2018. (in Chinese)

    [7] 赵密, 李旭东, 高志懂, 等. 地震作用下土-深埋地下结构相互作用的高效时程分析方法[J]. 防灾减灾工程学报, 2021, 41(1): 39-45, 54.

    ZHAO Mi, LI Xudong, GAO Zhidong, et al. Efficient analysis for seismic soil-structure interaction with deep burial depth[J]. Journal of Disaster Prevention and Mitigation Engineering, 2021, 41(1): 39-45, 54. (in Chinese)

    [8]

    BIELAK J. Domain reduction method for three-dimensional earthquake modeling in localized regions, part Ⅰ: theory[J]. Bulletin of the Seismological Society of America, 2003, 93(2): 817-824. doi: 10.1785/0120010251

    [9]

    WANG H X, YANG H, FENG Y, et al. Modeling and simulation of earthquake soil structure interaction excited by inclined seismic waves[J]. Soil Dynamics and Earthquake Engineering, 2021, 146: 106720. doi: 10.1016/j.soildyn.2021.106720

    [10]

    ZHANG L, ZHANG J H. Local wavefield refinement using Fourier interpolation and boundary extrapolation for finite-element method based on domain reduction method[J]. GEOPHYSICS, 2022, 87(3): T251-T263. doi: 10.1190/geo2021-0503.1

    [11]

    KONTOE S, ZDRAVKOVIC L, POTTS D M. An assessment of the domain reduction method as an advanced boundary condition and some pitfalls in the use of conventional absorbing boundaries[J]. International Journal for Numerical and Analytical Methods in Geomechanics, 2009, 33(3): 309-330. doi: 10.1002/nag.713

    [12] 胡丹, 李芬, 张开银. 饱和土-结构动力相互作用分析中地震动输入方法研究[J]. 岩土工程学报, 2018, 40(增刊2): 58-62. doi: 10.11779/CJGE2018S2012

    HU Dan, LI Fen, ZHANG Kaiyin. Wave input method for saturated soil-structure dynamic interaction analysis[J]. Chinese Journal of Geotechnical Engineering, 2018, 40(S2): 58-62. (in Chinese) doi: 10.11779/CJGE2018S2012

    [13] 刘中宪, 刘英, 孟思博, 等. 基于间接边界元法的近断层沉积谷地地震动模拟[J]. 岩土力学, 2021, 42(4): 1141-1155, 1169.

    LIU Zhongxian, LIU Ying, MENG Sibo, et al. Near-fault ground motion simulation of alluvial valley based on indirect boundary element method[J]. Rock and Soil Mechanics, 2021, 42(4): 1141-1155, 1169. (in Chinese)

    [14]

    ALIELAHI H, KAMALIAN M, ADAMPIRA M. Seismic ground amplification by unlined tunnels subjected to vertically propagating SV and P waves using BEM[J]. Soil Dynamics and Earthquake Engineering, 2015, 71: 63-79. doi: 10.1016/j.soildyn.2015.01.007

    [15] 朱俊, 梁建文. 基于FE-IBE耦合方法的地铁车站抗震分析[J]. 地震工程与工程振动, 2018, 38(4): 111-116.

    ZHU Jun, LIANG Jianwen. Seismic analysis of subway station by a FE-IBE coupling method[J]. Earthquake Engineering and Engineering Dynamics, 2018, 38(4): 111-116. (in Chinese)

    [16]

    VASILEV G, PARVANOVA S, DINEVA P, et al. Soil-structure interaction using BEM-FEM coupling through ANSYS software package[J]. Soil Dynamics and Earthquake Engineering, 2015, 70: 104-117. doi: 10.1016/j.soildyn.2014.12.007

    [17]

    SOARES D, GODINHO L. An overview of recent advances in the iterative analysis of coupled models for wave propagation[J]. Journal of Applied Mathematics, 2014, 2014: 1-21.

    [18]

    LUCO J E, DE BARROS F C P. Dynamic displacements and stresses in the vicinity of a cylindrical cavity embedded in a half-space[J]. Earthquake Engineering & Structural Dynamics, 1994, 23(3): 321-340.

    [19]

    WONG H L. Diffraction of P, SV, and Rayleigh waves by surface topography[D]. California: University of California, 1979.

    [20]

    RICKER N. The form and laws of propagation of seismic wavelets[J]. Geophysics, 1953, 18(1): 10-40. doi: 10.1190/1.1437843

图(15)  /  表(2)
计量
  • 文章访问数:  463
  • HTML全文浏览量:  69
  • PDF下载量:  159
  • 被引次数: 0
出版历程
  • 收稿日期:  2022-10-09
  • 网络出版日期:  2024-01-08
  • 刊出日期:  2023-12-31

目录

    /

    返回文章
    返回