• 全国中文核心期刊
  • 中国科技核心期刊
  • 美国工程索引(EI)收录期刊
  • Scopus数据库收录期刊

岩石颗粒与孔隙系统数字图像识别方法及应用

刘春, 许强, 施斌, 顾颖凡

刘春, 许强, 施斌, 顾颖凡. 岩石颗粒与孔隙系统数字图像识别方法及应用[J]. 岩土工程学报, 2018, 40(5): 925-931. DOI: 10.11779/CJGE201805018
引用本文: 刘春, 许强, 施斌, 顾颖凡. 岩石颗粒与孔隙系统数字图像识别方法及应用[J]. 岩土工程学报, 2018, 40(5): 925-931. DOI: 10.11779/CJGE201805018
LIU Chun, XU Qiang, SHI Bin, GU Ying-fan. Digital image recognition method of rock particle and pore system and its application[J]. Chinese Journal of Geotechnical Engineering, 2018, 40(5): 925-931. DOI: 10.11779/CJGE201805018
Citation: LIU Chun, XU Qiang, SHI Bin, GU Ying-fan. Digital image recognition method of rock particle and pore system and its application[J]. Chinese Journal of Geotechnical Engineering, 2018, 40(5): 925-931. DOI: 10.11779/CJGE201805018

岩石颗粒与孔隙系统数字图像识别方法及应用  English Version

详细信息
    作者简介:

    刘 春(1984- ),男,福建顺昌人,副教授,硕士生导师,主要从事计算工程地质方面的教学和研究工作。E-mail: chunliu@nju.edu.cn。

Digital image recognition method of rock particle and pore system and its application

  • 摘要: 以砂岩薄片微观图像为例,研究了岩石颗粒与孔隙系统数字图像识别、定量化和统计分析方法。通过多颜色分割和去杂等操作获得二值图像;提出改进的种子算法来封闭特定直径的孔喉,并自动分割和识别不同的孔隙和颗粒;引入了概率统计的方法,实现了由二维颗粒面积计算颗粒系统的三维分选系数;使用概率熵和分形维数分别来描述颗粒和孔隙的定向性和形状复杂度的变化等。在理论研究基础上,研发了孔隙(颗粒)及裂隙图像识别与分析系统(PCAS),通过简单操作即可得到颗粒和孔隙各种几何参数和统计参数。实例中,将PCAS应用于高孔隙度砂岩压密带微观形成机制研究。图像分析结果表明:①颗粒和孔隙得到了准确地识别量化,统计参数有效地描述和区分了不同的砂岩微观结构;②与V型压密带相比,产生平直型压密带的砂岩具有较大的孔隙度和平均孔隙面积,以及较好的颗粒分选性。研究表明砂岩压密带形态与其微观结构紧密联系,所采用的微观结构识别和分析方法可行。
    Abstract: The thin-section micro images of sandstone are used as an example to investigate the image recognition, quantification and statistical analysis methods for rock particle and pore system. A binary image is obtained by using multi-color segmentation and spot removal operations. An improved seed algorithm is proposed, by which the pore throats with certain diameter can be closed automatically so as to divide and identify different pores and particles. A probability statistical method is introduced to calculate a three-dimensional sorting coefficient based on two-dimensional particle areas. The probability entropy and fractal dimension are used to describe the directionality and the variation of shape complexity, respectively. On the basis of theoretical researches, the software “Pore (Particle) and cracks analysis system” (PCAS) is developed. In the example, PCAS is applied in the investigation of formation mechanism of compaction bands in porous sandstone. The image processing results show that: (1) The particles and pores are recognized and quantified accurately, and micro structures of different sandstone can be described and distinguised effectively by using the statistical parameters; (2) In comparison with that with chevron compaction bands, the host rock with straight compaction bands has greater porosity, average pore area and better grain sorting. The research indicates the formation of compaction bands in sandstone is closely related to the micro structures, and the recognition and the analysis methods of micro structures are reliable.
  • [1] 徐文杰, 岳中琦, 胡瑞林. 基于数字图像的土、岩和混凝土内部结构定量分析和力学数值计算的研究进展[J]. 工程地质学报, 2007, 15(3): 289-313. (XU Wen-jie, YUE Zhong-qi, HU Rui-lin. Current status of digital image based quantitative analysis of internal structures of soils, rocks and concretes and associated numerical simulation[J]. Journal of Engineering Geology, 2007, 15(3): 289-313. (in Chinese))
    [2] 彭瑞东, 杨彦从, 鞠 杨, 等. 基于灰度CT图像的岩石孔隙分形维数计算[J]. 科学通报, 2011, 56(26): 2256-2266. (PENG Rui-dong, YANG Yan-cong, JU Yang, et al. Computation of fractal dimension of rock pores based on gray CT images[J]. Chinese Sci Bull, 2011, 56(26): 2256-2266. (in Chinese))
    [3] TOMIOKA S, KOZAKI T, TAKAMATSU H, et al. Analysis of microstructural images of dry and water-saturated compacted bentonite samples observed with X-ray micro CT[J]. Applied Clay Science, 2010, 47(1): 510-512.
    [4] 李建胜, 王 东, 康天合. 基于显微CT试验的岩石孔隙结构算法研究[J]. 岩石工程学报, 2010, 32(11): 1703-1708. (LI Jian-sheng, WANG Dong, KANG Tian-he. Algorithmic study on rock pore structure based on micro-CT experiment[J]. Chinese Journal of Geotechnical Engineering, 2010, 32(11): 1703-1708. (in Chinese))
    [5] SEZER G İ, RAMYAR K, KARASU B, et al. Image analysis of sulfate attack on hardened cement paste[J]. Materials & Design, 2008, 29(1): 224-231.
    [6] LIU C, SHI B, ZHOU J, et al. Quantification and characterization of microporosity by image processing, geometric measurement and statistical methods: Application on SEM images of clay materials[J]. Applied Clay Science, 2011, 54(1): 97-106.
    [7] 吴义祥. 工程黏性土微观结构的定量评价[J]. 地球学报, 1991, 12(2): 143-151. (WU Yi-xiang. Quantitative approach on micro-structure of engineering clay[J]. Acta Geoscientica Sinica, 1991, 12(2): 143-151. (in Chinese))
    [8] 施 斌, 李生林, TOLKACHEV M. 黏性土微观结构SEM图象的定量研究[J]. 中国科学:技术科学, 1995, 25(6): 666-672. (SHI Bin, LI Sheng-lin, TOLKACHEV M. Quantitative research on SEM image of the microstructure of cohesive soil[J]. Science in China(Series A) , 1995, 25(6): 666-672. (in Chinese))
    [9] 涂新斌, 王思敬, 岳中琦. 香港风化花岗岩细观结构研究方法[J]. 工程地质学报, 2003, 11(4): 428-434. (TU Xin-bin, WANG Si-jin, YUE Zhong-qi. Methods for study of microstructure of weathered granite, HongKong[J]. Journal of Engineering Geology, 2003, 11(4): 428-434. (in Chinese))
    [10] 王宝军, 施 斌, 刘志彬, 等. 基于GIS的黏性土微观结构的分形研究[J]. 岩土工程学报, 2004, 26(2): 244-247. (WANG Bao-jun, SHI Bin, LIU Zhi-shan, et al. Fractal study on microstructure of clayey soil by GIS[J]. Chinese Journal of Geotechnical Engineering, 2004, 26(2): 244-247. (in Chinese))
    [11] 赵 岩, 郑娇玉, 郭 鹏, 等. ImageJ软件在泥石流固体颗粒分析中的应用[J]. 兰州大学学报:自然科学版, 2015, 51(6): 877-881. (ZHAO Yan, ZHEN Jiao-yu, GUO Peng, et al. Applications of the ImageJ sofeware in analysis of solid grains in a debris flow gully[J]. Journal of Lanzhou University (Natural Sciences), 2015, 51(6): 877-881. (in Chinese))
    [12] 张吉群, 胡长军, 和冬梅, 等. 孔隙结构图像分析方法及其在岩石图像中的应用[J]. 测井技术, 2015, 39(5): 550-554. (ZHANG Ji-qun, HU Chang-jun, HE Dong-mei, et al. Image analysis method of pore structure and its application in rock image[J]. Well Logging Technology, 2015, 39(5): 550-554. (in Chinese))
    [13] GONZALEZ, WOODS R C, RICHARD E. Digital image processing[M]. 2nd ed. New Jersey: Upper Saddle River, 2002.
    [14] YU W W, HE F, XI P. A rapid 3D seed-filling algorithm based on scan slice[J]. Computers & Graphics, 2010, 34(4): 449-459.
    [15] HARRELL J. A visual comparator for degree of sorting in thin and plane sections[J]. Journal of Sedimentary Research, 1985, 54(2): 276-292.
    [16] PARESCHI M T, POMPILIO M, INNOCENTI F. Automated evaluation of volumetric grain-size distribution from thin-section images[J]. Computers & Geosciences, 1990, 16(8): 1067-1084.
    [17] 施 斌. 黏性土击实过程中微观结构的定量评价[J]. 岩土工程学报, 1996, 18(4): 57-62. (SHI Bin. Quantitative assessment of changes of microstructure for clayey soil in the process of compaction[J]. Chinese Journal of Geotechnical Engineering, 1996, 18(4): 57-62. (in Chinese))
    [18] COX M R, BUDHU M. A practical approach to grain shape quantification[J]. Engineering Geology, 2008, 96(1/2): 1-16.
    [19] EICHHUBL P, HOOKER J N, LAUBACH S E. Pure and shear-enhanced compaction bands in aztec sandstone[J]. Journal of Structural Geology, 2010, 32(12): 1873-1886.
计量
  • 文章访问数: 
  • HTML全文浏览量:  0
  • PDF下载量: 
  • 被引次数: 0
出版历程
  • 修回日期:  2017-02-05
  • 发布日期:  2018-05-24

目录

    /

    返回文章
    返回