Creep tests and creep model for reconstituted over-consolidated saturated clay
-
摘要: 采取杭州地区黏土制备重塑超固结土样(OCR=1.00,1.25,1.67,2.00,3.00)进行三轴剪切蠕变试验,研究超固结饱和黏土的时间变形特性和蠕变模型,对模型参数取值进行了分析。结果表明,重塑超固结饱和黏土的应力应变曲线具有应变硬化特征,在恒定偏应力下土样的时间变形曲线具有双曲线特征;超固结比越大,施加偏应力初始阶段试样中产生的超静孔压越小,试样变形进入蠕变阶段的时间越早,且在一定时间内试样的蠕变量发展越小。基于“孔压消散法”确定了超固结土的蠕变起始时间,采用双曲线蠕变模型可以高度拟合超固结饱和黏土剪切蠕变发展规律,曲线拟合分析表明:在相同的偏应力下,不同超固结比试样的最终蠕变量大致相等,但是超固结比越大时,土样蠕变发展越缓慢,表现为双曲线蠕变模型参数As在超固结比变化时几乎保持为常量,参数Bs则随超固结比的增大近似呈线性增长。Abstract: The triaxial shear creep tests are carried out on the reconstituted over-consolidated clay samples (OCR=1.00, 1.25, 1.67, 2.00, 3.00) from Hangzhou, China. The time-dependent deformation characteristics and creep model for the over-consolidated saturated clay are studied, and the values of model parameters are analyzed. The results show that the stress-strain curve of the reconstituted over-consolidated saturated clay has strain-hardening characteristics. The time-deformation curves of the over-consolidated clays under constant deviator stress are of hyperbolic characteristics. The larger the over-consolidation ratio, the smaller the excess pore pressure generated at the initial stage of the deviator stress application, the earlier the creep stage starts, and the smaller the creep evolution of the sample within a certain time. Based on the "pore pressure dissipation method", the tEOP of the over-consolidated clay is determined. The hyperbolic creep model can highly fit the shear creep curves of the over-consolidated saturated clay. The curve fitting analysis shows that under the same deviator stress, the final creep values of the samples with different over-consolidation ratios are roughly equal. However, the larger the over-consolidation ratio, the slower the creep development of clay. The hyperbolic creep model parameter As almost remains constant when the over-consolidation ratio changes, while the parameter Bs approximately linearly increases with the increase of the over-consolidation ratio.
-
-
表 1 原状土的基本物理性质指标
Table 1 Index parameters of intact soil samples
取土深度/m Gs 含水率w/kPa 天然密度/(g·cm-3) 液限wL/% 塑限
wP/%塑性指数Ip 液性指数IL 15~25 2.72 36.21 1.87 40.27 20.26 20.01 0.79 表 2 超固结土三轴试验方案
Table 2 Test schemes of over-consolidated ratio
试样编号 OCR σ'c/kPa σ'0/kPa q/kPa K ① 1.00 200 200 155 0.68 ② 1.25 250 200 155 0.58 ③ 1.67 334 200 155 0.52 ④ 2.00 400 200 155 0.47 ⑤ 3.00 600 200 155 0.37 注:σ'c为试样先期有效固结压力;σ '0为初始有效围压;q为偏应力,q=σ1-σ3;K为蠕变偏应力和剪切强度qf的比值。 表 3 剪切蠕变双曲线模型参数
Table 3 Fitting parameters of hyperbolic creep model
超固结比 偏应力/
kPaAs/% Bs/min 相关系数R2/% 1.00 155 0.2397 904.33 99.64 1.25 155 0.2659 1685.06 99.89 1.67 155 0.2202 2248.02 99.78 2.00 155 0.2279 2602.10 99.74 3.00 155 0.2011 4352.29 95.64 -
[1] 王者超, 乔丽苹, 李术才. 荷载水平和孔隙比对土次压缩性质影响研究[J]. 土木工程学报, 2013, 46(1): 112-118. https://www.cnki.com.cn/Article/CJFDTOTAL-TMGC201301013.htm WANG Zhechao, QIAO Liping, LI Shucai. Influences of load level and void ratio on secondary compressibility of soil[J]. China Civil Engineering Journal, 2013, 46(1): 112-118. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-TMGC201301013.htm
[2] 曾玲玲, 洪振舜, 刘松玉, 等. 重塑黏土次固结性状的变化规律与定量评价[J]. 岩土工程学报, 2012, 34(8): 1496-1500. http://www.cgejournal.com/cn/article/id/14669 ZENG Lingling, HONG Zhenshun, LIU Songyu, et al. Variation law and quantitative evaluation of secondary consolidation behavior for remolded clays[J]. Chinese Journal of Geotechnical Engineering, 2012, 34(8): 1496-1500. (in Chinese) http://www.cgejournal.com/cn/article/id/14669
[3] YIN J H. Non-linear creep of soils in oedometer tests[J]. Géotechnique, 1999, 49(5): 699-707. doi: 10.1680/geot.1999.49.5.699
[4] SINGH A, MITCHELL J K. General stress-strain-time function for soils[J]. Journal of the Soil Mechanics and Foundations Division, 1968, 94(1): 21-46. doi: 10.1061/JSFEAQ.0001084
[5] MESRI G, FEBRES-CORDERO E, SHIELDS D R, et al. Discussion: shear-stress-strain time behaviour of clays[J]. Géotechnique, 1982, 32(4): 407-411. doi: 10.1680/geot.1982.32.4.407
[6] XIAO B, HU M Y, ZHOU P J, et al. Creep behavior of saturated clay in triaxial test and a hyperbolic model[J]. Geofluids, 2021: 1-12.
[7] 高彦斌. 超固结土一维次压缩特性实验研究[C]// 2004年度上海市土力学与岩土工程学术年会. 上海, 2004. Yanbin. Experimental study on one-dimensional compression characteristics of over-consolidated soil[C]// 2004 Annual Conference of Soil mechanics and Geotechnical Engineering in Shanghai. Shanghai, 2004. (in Chinese))
[8] 韩剑, 姚仰平, 尹振宇. 超固结度对超固结饱和黏土不排水蠕变特性的影响研究[J]. 岩土工程学报, 2018, 40(3): 426-430. doi: 10.11779/CJGE201803005 HAN Jian, YAO Yangping, YIN Zhenyu. Influences of overconsolidation ratio on undrained creep behavior of overconsolidated saturated clay[J]. Chinese Journal of Geotechnical Engineering, 2018, 40(3): 426-430. (in Chinese) doi: 10.11779/CJGE201803005
[9] YIN J H, ZHU J G, GRAHAM J. A new elastic viscoplastic model for time-dependent behaviour of normally and overconsolidated clays: theory and verification[J]. Canadian Geotechnical Journal, 2002, 39(1): 157-173. doi: 10.1139/t01-074
[10] 胡亚元, 杨平, 余启致. 超固结土次固结系数的时间效应[J]. 中国公路学报, 2016, 29(9): 29-37. https://www.cnki.com.cn/Article/CJFDTOTAL-ZGGL201609003.htm HU Yayuan, YANG Ping, YU Qizhi. Time effect of secondary consolidation coefficient of over-consolidated soil[J]. China Journal of Highway and Transport, 2016, 29(9): 29-37. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-ZGGL201609003.htm
[11] 土工试验方法标准: GB/T 50123—2019[S]. 北京: 中国计划出版社, 2019. Standard for Soil Test Method: GB/T 50123—2019[S]. Beijing: China Planning Press, 2019. (in Chinese)
[12] 肖斌. 重塑粉质黏土的蠕变特性及蠕变模型研究[D]. 杭州: 浙江工业大学, 2017. XIAO Bin. Study on Creep Characteristics and Creep Model of Reconstituted Silty Clay[D]. Hangzhou: Zhejiang University of Technology, 2017. (in Chinese)