Dynamic characteristics of dredged silt-solidified soil subgrade
-
摘要: 为实现疏浚淤泥固化土的资源利用,探究其作铁路路基填料的动力特性,以山东泰安大清河河道清淤工程为背景,针对疏浚淤泥固化土开展动三轴试验,分析不同配比下的动应力-动应变关系和阻尼比等特性。结果表明:不同配比试样动应力-动应变关系曲线变化趋势大体一致,双掺粉煤灰比单掺水泥的试样在相同条件下产生更大的剪应变;各配比下试样的阻尼比变化趋势基本一致;阻尼比随着动剪应变的增加先减小再显著增加,最终单掺试样的阻尼比稳定于30%左右,双掺试样稳定于10%~20%;得到土样累积塑性变形随振动次数的拟合对数曲线,并评估得到各试样的累积塑性应变均满足动力稳定需求,能为淤泥固化土用作铁路路基的研究提供一定参考价值。Abstract: To realize the resource utilization of dredged silt-solidified soil and to explore its dynamic characteristics as the railway subgrade fill, the triaxial tests on the dredging project of Daqinghe River in Tai'an, Shandong Province are carried out, and the characteristics of dynamic stress-dynamic strain relationship, dynamic shear modulus and damping ratio under different ratios are analyzed. The results show that the trend of dynamic stress-strain relationship curve under different ratios is generally the same, and the double-mixture fly ash produces greater shear strain than the single cement sample under the same conditions. The change trend of the damping ratio under each ratio is basically the same. The damping ratio first decreases and then significantly increases with the increasing kinetic shear strain. The damping ratio of the final single sample is stable at about 30%, the double-mixture test sample is stable at 10%~20%. The fitted logarithmic curve of the cumulative plastic deformation of soil samples with the vibration number is obtained and evaluated, and it is obtained that the cumulative plastic strain of each sample meets the requirements of dynamic stability. It may provide some reference value for the feasibility of silt-solidified soil as the railway subgrade.
-
Keywords:
- silt /
- solidified soil /
- subgrade fill /
- dynamic characteristic
-
-
表 1 现场疏浚淤泥物理性质指标
Table 1 Physical property indices of dredged silt on site
干密度/
(g·cm-3)液限/
%塑限/
%塑性指数/
%黏粒含量/
%粉粒含量/
%砂粒含量/
%PH值 0.7 36.2 19.7 17.0 39.0 60.4 0.6 6.5 表 2 试验工况方案
Table 2 Test schemes for working conditions
初始含水率/% 单掺水泥/
%强度/
kPa双掺粉煤灰/% 强度/
kPa50 6 759 15 621 60 8 645 871 70 10 654 772 -
[1] 彭荟源. 交通荷载下铁路路基粗粒填料动力特性研究[J]. 土工基础, 2023, 37(1): 124-127. https://www.cnki.com.cn/Article/CJFDTOTAL-TGJC202301028.htm PENG Huiyuan. Dynamic characteristics of coarse grained backfill of high railway base under the traffic load[J]. Soil Engineering and Foundation, 2023, 37(1): 124-127. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-TGJC202301028.htm
[2] SAXENA S K, AVRAMIDIS A S, REDDY K R. Dynamic moduli and damping ratios for cemented sands at low strains[J]. Canadian Geotechnical Journal, 1988, 25(2): 353-368. doi: 10.1139/t88-036
[3] FAHOUM K, AGGOUR M S, AMINI F. Dynamic properties of cohesive soils treated with Lime[J]. Journal of Geotechnical Engineering, 1996, 122(5): 382-389. doi: 10.1061/(ASCE)0733-9410(1996)122:5(382)
[4] 蔡袁强, 梁旭, 李坤. 水泥土-土复合试样的动力特性[J]. 水利学报, 2003, 34(10): 19-25. https://www.cnki.com.cn/Article/CJFDTOTAL-SLXB200310004.htm CAI Yuanqiang, LIANG Xu, LI Kun. Dynamic characteristics of composite sample of cemented clay-clay[J]. Journal of Hydraulic Engineering, 2003, 34(10): 19-25. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-SLXB200310004.htm
[5] SHARMA S S, FAHEY M. Evaluation of cyclic shear strength of two cemented calcareous soils[J]. Journal of Geotechnical and Geoenvironmental Engineering, 2003, 129(7): 608-618. doi: 10.1061/(ASCE)1090-0241(2003)129:7(608)
[6] SUBRAMANIAM P, BANERJEE S. Factors affecting shear modulus degradation of cement treated clay[J]. Soil Dynamics and Earthquake Engineering, 2014, 65: 181-188. doi: 10.1016/j.soildyn.2014.06.013
[7] 杨广庆. 水泥改良土的动力特性试验研究[J]. 岩石力学与工程学报, 2003, 22(7): 1156-1160. https://www.cnki.com.cn/Article/CJFDTOTAL-YSLX200307021.htm YANG Guangqing. Study of dynamic performance of cement-improved soil[J]. Chinese Journal of Rock Mechanics and Engineering, 2003, 22(7): 1156-1160. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YSLX200307021.htm
[8] 王佳, 张家生, 孟飞, 等. 交通荷载作用下公路路基动力响应研究[J]. 路基工程, 2013(2): 7-10, 14. https://www.cnki.com.cn/Article/CJFDTOTAL-LJGC201302003.htm WANG Jia, ZHANG Jiasheng, MENG Fei, et al. Study on dynamic response of highway subgrade under traffic loads[J]. Subgrade Engineering, 2013(2): 7-10, 14. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-LJGC201302003.htm
[9] MAHER M H, RO K S, WELSH J P. High strain dynamic modulus and damping of chemically grouted sand[J]. Soil Dynamics and Earthquake Engineering, 1994, 13(2): 131-138. doi: 10.1016/0267-7261(94)90005-1
[10] DELFOSSE-RIBAY E, DJERAN-MAIGRE I, CABRILLAC R, et al. Shear modulus and damping ratio of grouted sand[J]. Soil Dynamics and Earthquake Engineering, 2004, 24(6): 461-471.
[11] 冷伍明, 翟斌, 徐方, 等. 基于大型动三轴试验的粗粒土累积塑性应变概率模型研究[J]. 振动与冲击, 2020, 39(15): 214-220, 249. https://www.cnki.com.cn/Article/CJFDTOTAL-ZDCJ202015030.htm LENG Wuming, ZHAI Bin, XU Fang, et al. Probabilistic model of cumulative plastic strain of coarse-grained soil fill based on large-scale dynamic triaxial tests[J]. Journal of Vibration and Shock, 2020, 39(15): 214-220, 249. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-ZDCJ202015030.htm
[12] 赵莹莹. 重载列车荷载下路基素填土与改良土力学性能研究[D]. 哈尔滨: 哈尔滨工业大学, 2017. ZHAO Yingying. Mechanical Properties of Plain Soils and Improved Soils Subjected to Heavy-Haul Train Load[D]. Harbin: Harbin Institute of Technology, 2017. (in Chinese)
-
期刊类型引用(4)
1. 李犇,陈志扬,卢奇. 固化灰渣土路基动力特性及稳定性试验研究. 中国资源综合利用. 2025(03): 4-8+15 . 百度学术
2. 刘晓楠,肖桂元,王浩鹏,王一鹏. 循环荷载下红黏土的变形演化分析. 水利与建筑工程学报. 2024(03): 73-83 . 百度学术
3. 李犇,陈志扬,王露艳. 单向激振作用下灰渣固化软土动力学特性试验研究. 中国水运(下半月). 2024(11): 126-128 . 百度学术
4. 李犇,陈志扬,王露艳. 单向激振作用下灰渣固化软土动力学特性试验研究. 中国水运. 2024(22): 126-128 . 百度学术
其他类型引用(3)