• 全国中文核心期刊
  • 中国科技核心期刊
  • 美国工程索引(EI)收录期刊
  • Scopus数据库收录期刊

海洋黏土孔压增长和刚度弱化的循环阈值剪应变试验研究

肖兴, 吉东伟, 杭天柱, 吴琪, 陈国兴

肖兴, 吉东伟, 杭天柱, 吴琪, 陈国兴. 海洋黏土孔压增长和刚度弱化的循环阈值剪应变试验研究[J]. 岩土工程学报, 2023, 45(S1): 123-127. DOI: 10.11779/CJGE2023S10005
引用本文: 肖兴, 吉东伟, 杭天柱, 吴琪, 陈国兴. 海洋黏土孔压增长和刚度弱化的循环阈值剪应变试验研究[J]. 岩土工程学报, 2023, 45(S1): 123-127. DOI: 10.11779/CJGE2023S10005
XIAO Xing, JI Dongwei, HANG Tianzhu, WU Qi, CHEN Guoxing. Cyclic threshold shear strains for pore water pressure generation and stiffness degradation in marine clay[J]. Chinese Journal of Geotechnical Engineering, 2023, 45(S1): 123-127. DOI: 10.11779/CJGE2023S10005
Citation: XIAO Xing, JI Dongwei, HANG Tianzhu, WU Qi, CHEN Guoxing. Cyclic threshold shear strains for pore water pressure generation and stiffness degradation in marine clay[J]. Chinese Journal of Geotechnical Engineering, 2023, 45(S1): 123-127. DOI: 10.11779/CJGE2023S10005

海洋黏土孔压增长和刚度弱化的循环阈值剪应变试验研究  English Version

基金项目: 

国家自然科学基金项目 51978334

详细信息
    作者简介:

    作者简介:肖兴(1995—),男,博士研究生,主要从事海洋土动力特性试验研究。E-mail: xx_0524@126.com

    通讯作者:

    吴琪, E-mail:qw09061801@163.com

  • 中图分类号: TU447

Cyclic threshold shear strains for pore water pressure generation and stiffness degradation in marine clay

  • 摘要: 循环阈值剪应变是循环荷载作用下饱和土体的基本特性。针对不同塑性指数(Ip)的长江口原状饱和海洋黏土,开展了一系列应变控制逐级加载的不排水循环三轴试验,研究了引起原状饱和海洋黏土孔压增长的循环阈值剪应变(γtp)和刚度弱化的循环阈值剪应变(γtd)。结果表明:长江口海洋黏土γtpγtd均随Ip的增大而增大,相同测试条件下,同一海洋黏土的γtp大于γtdIp ≈ 17时,γtp = 0.018%~0.019%,γtd = 0.011%~0.012%,Ip ≈ 30时,γtp =0.037%~0.041%,γtd = 0.022%~0.027%;长江口海洋黏土刚度弱化的发生不一定需要孔压的增长,但会因孔压增长而加剧。与已有文献中陆域黏土的γtpγtd的对比分析发现:特殊的海洋沉积环境是造成长江口海洋黏土γtpγtd低于原状陆域黏土的原因。
    Abstract: The cyclic threshold shear strain is a fundamental property of saturated soils under cyclic loading. To investigate the cyclic threshold shear strains for pore water pressure generation (γtp) and stiffness degradation (γtd), a series of strain-controlled multistage undrained cyclic triaxial tests are carried out on the in-situ saturated marine clay in the Yangtze River estuary with different values of plasticity index Ip. The test results show that both γtp and γtd increase with the increasing Ip of the marine clay, and γtp is greater than γtd for the same marine clay tested under the same conditions, with γtp = 0.018% ~ 0.019%, γtd = 0.011% ~ 0.012% for Ip of 17, and γtp = 0.037% ~ 0.041%, γtd = 0.022% ~ 0.027% for Ip of 30. Moreover, the development of stiffness degradation may not necessarily require the pore water pressure generation, but can be aggravated by it. The γtp and γtd of the marine clay are compared with those of the terrestrial soils cited from the published literatures, indicating that the special marine sedimentary environment causes the γtp and γtd of the marine clay in the Yangtze estuary to be smaller than those of the undisturbed terrestrial clay.
  • 图  1   J7-10应变、应力、动剪切模量和孔压随循环振次的变化

    Figure  1.   Variation of strain, stress, dynamic shear modulus and pore pressure with cycles for J7-10

    图  2   代表性试样J7-8和J7-10的rui,Nγc的关系曲线

    Figure  2.   Relation curves between rui,N and γc for J7-8 and J7-10

    图  3   代表性试样J7-8和J7-10的δN的关系曲线

    Figure  3.   Relation curves between δ and N for J7-8 and J7-10

    图  4   代表性试样J7-8和J7-10的tγc的关系曲线

    Figure  4.   Relation curves between t and γc for J7-8 and J7-10

    图  5   长江口海洋黏土与陆域黏土γtpγtd差异对比[4, 9, 11, 12, 20-21]

    Figure  5.   Comparison of γtp and γtd between marine clay in Yangtze River estuary and terrestrial clay[4, 9, 11, 12, 20-21]

    表  1   海洋黏土基本物理指标及试验工况

    Table  1   Basic physical properties and experimental conditions of marine clay

    试样
    编号
    基本物理指标 试验条件
    海床以下
    深度/m
    Gs 含水率/
    %
    天然密度/
    (g·cm-3)
    塑性指数
    Ip
    土类
    名称
    初始有效固结
    压力σc0/kPa
    γc/
    %
    固结后
    体变/%
    J7-4 7.6~7.8 2.66 42.22 1.78 30.6 黏土 55 0.015, 0.03,
    0.075, 0.15,
    0.75, 1, 3
    3.81
    J7-6 9.6~9.8 2.64 47.23 1.75 32.8 黏土 70 4.64
    J7-8 11.6~11.8 2.55 45.61 1.59 17.4 黏土 80 5.31
    J7-10 14.6~14.8 2.65 43.64 1.77 34.5 黏土 100 3.43
    J7-14 18.6~18.8 2.63 42.21 1.74 31.9 黏土 130 4.94
    J7-24 28.6~28.8 2.65 35.35 1.93 17.2 黏土 200 5.56
    下载: 导出CSV

    表  2   海洋黏土γtpγtd汇总表

    Table  2   Summary table of γtp and γtd of marine clay

    试样编号 塑性指数Ip γtp /% γtd /% γtp/γtd
    J7-8 17.4 0.018 0.011 1.64
    J7-24 17.2 0.019 0.012 1.58
    J7-10 34.5 0.040 0.027 1.48
    J7-6 32.8 0.039 0.026 1.50
    J7-14 31.9 0.037 0.023 1.61
    J7-4 30.6 0.041 0.022 1.86
    下载: 导出CSV
  • [1]

    ZHU J F, ZHAO H Y, LUO Z Y, et al. Investigation of the mechanical behavior of soft clay under combined shield construction and ocean waves[J]. Ocean Engineering, 2020, 206: 107250. doi: 10.1016/j.oceaneng.2020.107250

    [2] 黄茂松, 边学成, 陈育民, 等. 土动力学与岩土地震工程[J]. 土木工程学报, 2020, 53(8): 64-86. https://www.cnki.com.cn/Article/CJFDTOTAL-TMGC202008008.htm

    HUANG Maosong, BIAN Xuecheng, CHEN Yumin, et al. Soil dynamics and geotechnical earthquake engineering[J]. China Civil Engineering Journal, 2020, 53(8): 64-86. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-TMGC202008008.htm

    [3] 潘华, 陈国兴. 复杂应力条件下饱和南京细砂门槛剪应变特性[J]. 南京工业大学学报(自然科学版), 2011, 33(3): 28-32. doi: 10.3969/j.issn.1671-7627.2011.03.006

    PAN Hua, CHEN Guoxing. Characteristics of threshold shear strain of saturated Nanjing fine sand under complex stress condition[J]. Journal of Nanjing University of Technology (Natural Science Edition), 2011, 33(3): 28-32. (in Chinese) doi: 10.3969/j.issn.1671-7627.2011.03.006

    [4]

    CHEN G X, ZHAO D F, CHEN W Y, et al. Excess pore-water pressure generation in cyclic undrained testing[J]. Journal of Geotechnical and Geoenvironmental Engineering, 2019, 145(7): 04019022. doi: 10.1061/(ASCE)GT.1943-5606.0002057

    [5]

    VUCETIC M, THANGAVEL H, MORTEZAIE A. Cyclic secant shear modulus and pore water pressure change in sands at small cyclic strains[J]. Journal of Geotechnical and Geoenvironmental Engineering, 2021, 147(5): 04021018. doi: 10.1061/(ASCE)GT.1943-5606.0002490

    [6]

    SAATHOFF J E, ACHMUS A. Excess pore pressure estimation based on cyclic laboratory tests[C]//Proceedings of the 7th International Young Geotechnical Engineers Conference, Australian Geomechanics Society. Sydney Australia, 2022: 451-456.

    [7]

    ANDREASSON B A. Dynamic deformation characteristics of a soft clay[C]//5th International Conference on Recent Advances in Geotechnical Earthquake Engineering and Soil Dynamics. St Louis, Missouri, 1981: 65-70.

    [8]

    OHARA S, MATSUDA H. Study on the settlement of saturated clay layer induced by cyclic shear[J]. Soils and Foundations, 1988, 28(3): 103-113. doi: 10.3208/sandf1972.28.3_103

    [9]

    ICHII K, MIKAMI T. Cyclic threshold shear strain in pore water pressure generation in clay in situ samples[J]. Soils and Foundations, 2018, 58(3): 756-765. doi: 10.1016/j.sandf.2018.01.005

    [10]

    HSU C C, VUCETIC M. Threshold shear strain for cyclic pore-water pressure in cohesive soils[J]. Journal of Geotechnical and Geoenvironmental Engineering, 2006, 132(10): 1325-1335. doi: 10.1061/(ASCE)1090-0241(2006)132:10(1325)

    [11]

    TABATA K, VUCETIC M. Threshold shear strain for cyclic degradation of three clays[C]//5th International Conference on Recent Advances in Geotechnical Earthquake Engineering and Soil Dynamics. San Diego, California, 2010, session01a: 30.

    [12]

    MORTEZAIE A, VUCETIC M. Threshold shear strains for cyclic degradation and cyclic pore water pressure generation in two clays[J]. Journal of Geotechnical and Geoenvironmental Engineering, 2016, 142(5): 04016007. doi: 10.1061/(ASCE)GT.1943-5606.0001461

    [13]

    BANERJEE S, BALAJI P. Effect of anisotropy on cyclic properties of Chennai marine clay[J]. International Journal of Geosynthetics and Ground Engineering, 2018, 4(3): 1-11.

    [14]

    ABDELLAZIZ M, KARRAY M, CHEKIRED M, et al. Shear modulus and hysteretic damping ratio of sensitive eastern Canada clays[J]. Canadian Geotechnical Journal, 2021, 58(8): 1118-1134. doi: 10.1139/cgj-2020-0254

    [15] 中华人民共和国建设部. 土的工程分类标准: GB/T 50145—2007[S]. 北京: 中国计划出版社, 2008.

    Ministry of Construction of the People's Republic of China. Standard for Engineering Classification of Soil: GB/T 50145—2007[S]. Beijing: China Planning Press, 2008. (in Chinese)

    [16] 马维嘉, 陈国兴, 李磊, 等. 循环荷载下饱和南沙珊瑚砂的液化特性试验研究[J]. 岩土工程学报, 2019, 41(5): 981-988. doi: 10.11779/CJGE201905023

    MA Weijia, CHEN Guoxing, LI Lei, et al. Experimental study on liquefaction characteristics of saturated coral sand in Nansha Islands under cyclic loading[J]. Chinese Journal of Geotechnical Engineering, 2019, 41(5): 981-988. (in Chinese) doi: 10.11779/CJGE201905023

    [17]

    ROLLINS K M, EVANS M D, DIEHL N B, et al. Shear modulus and damping relationships for gravels[J]. Journal of Geotechnical and Geoenvironmental Engineering, 1998, 124(5): 396-405. doi: 10.1061/(ASCE)1090-0241(1998)124:5(396)

    [18]

    CHEN G X, ZHOU Z L, SUN T A, et al. Shear modulus and damping ratio of sand-gravel mixtures over a wide strain range[J]. Journal of Earthquake Engineering, 2019, 23(8): 1407-1440. doi: 10.1080/13632469.2017.1387200

    [19] 栾茂田, 何杨, 许成顺, 等. 黄河三角洲粉土循环剪切特性的试验研究[J]. 岩土力学, 2008, 29(12): 3211-3216. https://www.cnki.com.cn/Article/CJFDTOTAL-YTLX200812011.htm

    LUAN Maotian, HE Yang, XUN Chengshun, et al. Experimental study of cyclic shear behaviour of silty soils in Yellow River Delta[J]. Rock and Soil Mechanics, 2008, 29(12): 3211-3216. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YTLX200812011.htm

    [20]

    HSU C C, VUCETIC M. Volumetric threshold shear strain for cyclic settlement[J]. Journal of Geotechnical and Geoenvironmental Engineering, 2004, 130(1): 58-70. doi: 10.1061/(ASCE)1090-0241(2004)130:1(58)

    [21]

    VUCETIC M. Cyclic threshold shear strains in soils[J]. Journal of Geotechnical Engineering, 1994, 120(12): 2208-2228.

  • 期刊类型引用(9)

    1. 孙大伟,许鑫洋,郦能惠,章涵,李登华,许兵,黄城友. 高面板坝挤压墙-垫层料接触面的大型单剪试验及力学特性研究. 岩土工程学报. 2025(02): 388-396 . 本站查看
    2. 邹昌喜,张明峻,王伟,徐炎兵,夏建国. 基于数值模拟法的某海上风电钢管桩承载力特性研究. 土工基础. 2025(01): 108-112 . 百度学术
    3. 朱俊高,陈鸽,王涛,夏勇,彭文明,罗启迅. 一种适用于细粒土的新型叠片式单剪仪研制与应用. 岩土工程学报. 2024(12): 2668-2674 . 本站查看
    4. 李浩民,饶锡保,江洎洧,徐晗,卢一为,刘蔚. 单剪与常规三轴条件下土石混合体强度特性差异. 长江科学院院报. 2023(03): 105-111 . 百度学术
    5. 徐晗,熊泽斌,潘家军,郑光俊. 拉洛水利枢纽沥青混凝土心墙与廊道连接型式研究. 人民长江. 2023(03): 161-165 . 百度学术
    6. 左永振,陈良,徐晗,李波,陈劲松. 大藤峡二期围堰结构和渗控安全性研究. 人民珠江. 2023(07): 27-35 . 百度学术
    7. 何芳婵,李威,褚青来,吕正勋,李世伟. 坝坡垫层料降雨冲蚀破坏机理研究. 河北工程大学学报(自然科学版). 2022(01): 72-77 . 百度学术
    8. 王艳丽,刘晶,王永明,潘家军,陈云. 复合土工膜与防渗墙连接的大型剪切试验研究. 长江科学院院报. 2021(04): 75-80 . 百度学术
    9. 王煜,付建新,杨子龙. 岩石-充填体耦合接触面细观参数及其力学特性研究. 矿业研究与开发. 2020(03): 113-118 . 百度学术

    其他类型引用(9)

图(5)  /  表(2)
计量
  • 文章访问数:  162
  • HTML全文浏览量:  35
  • PDF下载量:  41
  • 被引次数: 18
出版历程
  • 收稿日期:  2023-07-05
  • 网络出版日期:  2023-11-23
  • 刊出日期:  2023-10-31

目录

    /

    返回文章
    返回