Development and mechanical characteristics of a recyclable self-balancing detection device
-
摘要: 针对传统桩基静载试验中存在的主要问题,研发了一种可回收自平衡法桩基承载力检测装置,建立了新型可回收检测结构作用下的试桩荷载传递模型,推导出层状地基中桩身的荷载传递矩阵,并通过实际工程三维有限元计算结果,验证了理论解析方法的可靠性。结合现场实测获取的荷载-位移、桩身轴力等数据,探究了该结构的工作机理。结果表明:①该新型结构装配化程度高,测试周期短,能耗低,试验空间要求小,具备推广价值。②理论解析模型得出的桩身轴力、荷载位移曲线与实测结果吻合较好,均在误差允许范围内。③相对于传统荷载箱测试结构,该新型结构测得承载力精度提高3.5%。因此,该理论模型与新型结构在实际工程中具备很大的适用性与推广价值。Abstract: Aiming at the main problems existing in the static load tests on pile foundations, a recyclable self-balancing detection device for the bearing capacity of the pile foundations is developed. The load transfer model for the test piles under the action of a new recyclable detection structure is established, and the load transfer matrix of pile body in a layered foundation is derived. The reliability of theoretical analysis is verified by the results of three-dimensional finite element calculation in practical engineering. The working mechanism of the structure is studied based on the data of load-displacement and pile axial force obtained from the field measurements. The results show that: (1) The new structure has high assembly degree, short test period, low energy consumption and small test space requirements, and is worth popularizing. (2) The axial load-displacement curves of the pile obtained from the theoretical analytical model are in agreement with the measured results, both of which are within the allowable error range compared with those of the load box test structure. (3) The accuracy of the bearing capacity measured by the new structure is improved by 3.5%. Therefore, the theoretical model and the new structure are of great applicability and popularization value in practical engineering.
-
Keywords:
- pile foundation /
- self-balancing method /
- layered foundation /
- load transfer model
-
-
[1] SU D, WU Z, LEI G, et al. Numerical study on the installation effect of a jacked pile in sands on the pile vertical bearing capacities[J]. Computers and Geotechnics, 2022, 145: 104690. doi: 10.1016/j.compgeo.2022.104690
[2] 江杰, 付臣志, 王顺苇, 等. 考虑实际分布形式的水平受荷桩桩周土抗力分析方法[J]. 工程力学, 2021, 38(11): 199-211. https://www.cnki.com.cn/Article/CJFDTOTAL-GCLX202111021.htm JIANG Jie, FU Chenzhi, WANG Shunwei, et al. Analytical method of soil resistance around laterally loaded piles considering its actual distribution[J]. Engineering Mechanics, 2021, 38(11): 199-211. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-GCLX202111021.htm
[3] LIU K F, FENG W Q, CAI Y H, et al. Physical model study of pile type effect on long-term settlement of geosynthetic-reinforced pile-supported embankment under traffic loading[J]. Transportation Geotechnics, 2023, 38: 100923. doi: 10.1016/j.trgeo.2022.100923
[4] 张振, 郑文强, 叶观宝, 等. 循环荷载下水泥土桩复合单元体变形特性及其地基长期沉降计算方法[J]. 中国公路学报, 2022, 35(11): 21-29. https://www.cnki.com.cn/Article/CJFDTOTAL-ZGGL202211003.htm ZHANG Zhen, ZHENG Wenqiang, YE Guanbao, et al. Deformation and long-term settlement calculation method of unit cell of soil-cement column-reinforced soft soil under cyclic loading[J]. China Journal of Highway and Transport, 2022, 35(11): 21-29. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-ZGGL202211003.htm
[5] IU P Y, LIU C Y, ZHANG S M, et al. Depth-varying corrosion characteristics and stability bearing capacity of steel pipe piles under aggressive marine environment[J]. Ocean Engineering, 2022, 266: 112649. doi: 10.1016/j.oceaneng.2022.112649
[6] 孙毅龙, 许成顺, 杜修力, 等. 海上风电大直径单桩的修正p-y曲线模型[J]. 工程力学, 2021, 38(4): 44-53. https://www.cnki.com.cn/Article/CJFDTOTAL-GCLX202104006.htm SUN Yilong, XU Chengshun, DU Xiuli, et al. A modified p-y curve model of large-monopiles of offshore wind power plants[J]. Engineering Mechanics, 2021, 38(4): 44-53. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-GCLX202104006.htm
[7] 刘士伟. 高应变法测承载力在预应力管桩检测中的应用研究[D]. 青岛: 青岛理工大学, 2015. LIU Shiwei. Application Research on High Strain Measurement of Bearing Capacity in the Detection of Prestressed Pipe Pile[D]. Qingdao: Qingdao Tehcnology University, 2015. (in Chinese)
[8] 缪泽军. 高应变法在人工挖孔嵌岩桩检测中的应用[J]. 岩土力学, 2003, 24(增刊2): 557-562. https://www.cnki.com.cn/Article/CJFDTOTAL-YTLX2003S2132.htm MIAO Zejun. Application of high strain dynamic in testing of rock-inset pile with hand excavation[J]. Rock and Soil Mechanics, 2003, 24(S2): 557-562. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YTLX2003S2132.htm
[9] 袁从华, 章光. 大吨位堆载法对单桩承载力试验的影响[J]. 岩土力学, 1997, 18(1): 78-83. https://www.cnki.com.cn/Article/CJFDTOTAL-YTLX199701012.htm YUAN Conghua, ZHANG Guang. Analyses of effects of high-tunage piling-up weights method on static load test for bearing capacity of a single pile[J]. Rock and Soil Mechanics, 1997, 18(1): 78-83. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YTLX199701012.htm
[10] 孙熙平, 张勇, 郑锋勇, 等. 高桩码头基桩竖向承载力原型试验研究[J]. 岩土力学, 2014, 35(9): 2609-2615. https://www.cnki.com.cn/Article/CJFDTOTAL-YTLX201409026.htm SUN Xiping, ZHANG Yong, ZHENG Fengyong, et al. Research on bearing capacity prototype test of high-piled wharf piles[J]. Rock and Soil Mechanics, 2014, 35(9): 2609-2615. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YTLX201409026.htm
[11] 朱超, 贾学斌, 杨宇. 大吨位嵌岩桩承载力现场足尺试验研究[J]. 建筑结构, 2021, 51(增刊2): 1608-1612. ZHU Chao, JIA Xuebin, YANG Yu. Field full scale test on large tonnage bearing capacity of rock-socketed piles[J]. Building Structure, 2021, 51(S2): 1608-1612. (in Chinese)
[12] 褚克南, 张文伟, 姚学朝, 等. 软土地区桩基超大吨位堆载试验、装置及工艺方法研究[J]. 岩土工程学报, 2003, 25(1): 41-46. http://www.cgejournal.com/cn/article/id/11118 CHU Kenan, ZHANG Wenwei, YAO Xuechao, et al. Study on facilities and technology of pile test in soft soil under extra-heavy load[J]. Chinese Journal of Geotechnical Engineering, 2003, 25(1): 41-46. (in Chinese) http://www.cgejournal.com/cn/article/id/11118
[13] 邓会元, 戴国亮, 龚维明, 等. 不同平衡堆载条件下桩基承载特性的原位试验研究[J]. 岩土力学, 2015, 36(11): 3063-3070. https://www.cnki.com.cn/Article/CJFDTOTAL-YTLX201511004.htm DENG Huiyuan, DAI Guoliang, GONG Weiming, et al. In situ experimental study of bearing characteristics of pile foundation under different balanced surcharges[J]. Rock and Soil Mechanics, 2015, 36(11): 3063-3070. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YTLX201511004.htm
[14] 周洪波, 黄胜生. 锚桩法单桩静载试验中群桩相互作用及误差分析[J]. 岩土力学, 2004, 25(10): 1613-1616. https://www.cnki.com.cn/Article/CJFDTOTAL-YTLX200410022.htm ZHOU Hongbo, HUANG Shengsheng. Interaction and error analysis of pile groups in anchor-pile loading test[J]. Rock and Soil Mechanics, 2004, 25(10): 1613-1616. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YTLX200410022.htm
[15] 赵海生. 高应变法模拟Q-s曲线误差分析[J]. 岩石力学与工程学报, 2005, 24(12): 2129-2135. https://www.cnki.com.cn/Article/CJFDTOTAL-YSLX200512026.htm ZHAO Haisheng. Errors study on Q-s curve of pile simulated by high strain dynamic testing method[J]. Chinese Journal of Rock Mechanics and Engineering, 2005, 24(12): 2129-2135. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YSLX200512026.htm
[16] OSTERBERG J. New device for load testing driven piles and drilled shafts separates friction and end bearing[C]// International Conference on Piling and Deep Foundations, 1989: 421-427.
[17] FELLENIUS B H, ALTAEE A, KULESZA R, et al. O-cell testing and FE analysis of 28-m-deep barrette in Manila, Philippines[J]. Journal of Geotechnical and Geoenvironmental Engineering, 1999, 125(7): 566-575.
[18] CASTELLI R J, FAN K. O-cell test results for drilled shafts in marl and limestone[C]//Deep Foundations 2002, Orlando, Florida, USA. Reston, VA: American Society of Civil Engineers, 2002: 807-823.
[19] 龚维明, 蒋永生, 翟晋. 桩承载力自平衡测试法[J]. 岩土工程学报, 2000, 22(5): 532-536. http://www.cgejournal.com/cn/article/id/10566 GONG Weiming, JIANG Yongsheng, ZHAI Jin. Self-balanced loading test for pile bearing capacity[J]. Chinese Journal of Geotechnical Engineering, 2000, 22(5): 532-536. (in Chinese) http://www.cgejournal.com/cn/article/id/10566
[20] 龚维明, 戴国亮, 蒋永生, 等. 桩承载力自平衡测试理论与实践[J]. 建筑结构学报, 2002, 23(1): 82-88. https://www.cnki.com.cn/Article/CJFDTOTAL-JZJB200201014.htm GONG Weiming, DAI Guoliang, JIANG Yongsheng, et al. Theory and practice of self-balanced loading test for pile bearing capacity[J]. Journal of Building Structures, 2002, 23(1): 82-88. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-JZJB200201014.htm
[21] 徐长节, 李碧青, 蔡袁强. 自平衡法试桩的承载特性试验研究[J]. 浙江大学学报(工学版), 2012, 46(7): 1262-1268. https://www.cnki.com.cn/Article/CJFDTOTAL-ZDZC201207019.htm XU Changjie, LI Biqing, CAI Yuanqiang. Bearing behaviors of self-balanced pile[J]. Journal of Zhejiang University (Engineering Science), 2012, 46(7): 1262-1268. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-ZDZC201207019.htm
[22] 董建华, 田文通, 杨博, 等. 一种可回收自平衡法桩基承载力检测装置及施做方法: CN111962573B[P]. 2021-10-08. DONG Jianhua, TIAN Wentong, YANG Bo, et al. Recyclable Pile Foundation Bearing Capacity Detection Device Based on Self-Balancing Method and Construction Method: CN111962573B[P]. 2021-10-08. (in Chinese)
[23] 龚维明, 戴国亮. 桩承载力自平衡测试技术研究与应用[M]. 2版. 北京: 中国建筑工业出版社, 2016. GONG Weiming, DAI Guoliang. Research and Application of Self-Balancing Test Technology for Pile Bearing Capacity[M]. 2nd ed. Beijing: China Architecture & Building Press, 2016. (in Chinese)