Loading [MathJax]/jax/output/SVG/jax.js

    冲击载荷作用下预应力锚杆锚固阻裂效应试验研究

    祖国利, 王俊, 宁建国, 蒲志强, 闫立恒, 任志伟, 胡浩

    祖国利, 王俊, 宁建国, 蒲志强, 闫立恒, 任志伟, 胡浩. 冲击载荷作用下预应力锚杆锚固阻裂效应试验研究[J]. 岩土工程学报, 2023, 45(8): 1743-1753. DOI: 10.11779/CJGE20221348
    引用本文: 祖国利, 王俊, 宁建国, 蒲志强, 闫立恒, 任志伟, 胡浩. 冲击载荷作用下预应力锚杆锚固阻裂效应试验研究[J]. 岩土工程学报, 2023, 45(8): 1743-1753. DOI: 10.11779/CJGE20221348
    ZU Guoli, WANG Jun, NING Jianguo, PU Zhiqiang, YAN Liheng, REN Zhiwei, HU Hao. Experimental study on anchoring crack-resistance effects of prestressed anchor under impact loads[J]. Chinese Journal of Geotechnical Engineering, 2023, 45(8): 1743-1753. DOI: 10.11779/CJGE20221348
    Citation: ZU Guoli, WANG Jun, NING Jianguo, PU Zhiqiang, YAN Liheng, REN Zhiwei, HU Hao. Experimental study on anchoring crack-resistance effects of prestressed anchor under impact loads[J]. Chinese Journal of Geotechnical Engineering, 2023, 45(8): 1743-1753. DOI: 10.11779/CJGE20221348

    冲击载荷作用下预应力锚杆锚固阻裂效应试验研究  English Version

    基金项目: 

    国家自然科学基金项目 52074170

    国家自然科学基金项目 51904163

    深部煤矿采动响应与灾害预防国家重点实验室开放基金项目 SKLMRDPC21KF05

    详细信息
      作者简介:

      祖国利(1999—),男,硕士,主要从事矿山压力与岩层控制方面的研究工作。E-mail:15726421761@163.com

      通讯作者:

      王俊, E-mail: wangjunsdkjd@126.com

    • 中图分类号: TU456

    Experimental study on anchoring crack-resistance effects of prestressed anchor under impact loads

    • 摘要:

      在采动应力、冲击动载作用下,深部巷道围岩原生裂隙进行发育、扩展、失稳是深部围岩动力灾害的重要诱因,通过锚杆支护增加破碎围岩完整性,抑制原生裂隙的再度扩展是预防围岩动力灾害的重要手段。为此,采用分离式霍普金森压杆试验系统开展端锚、全锚、让压+端锚3种锚固方式及端头锚固不同预紧力矩条件下预应力锚杆CCNBD试件的冲击动载试验,分析了预应力锚杆对岩体动态断裂韧性、裂纹起裂时间、裂纹扩展速度的影响规律,揭示冲击载荷作用下预应力锚杆锚固阻裂效应。研究结果表明:①预应力锚杆阻裂效应表现为提高岩体动态断裂韧性、延缓裂纹起裂时间与降低裂纹扩展速度;②高预紧力端头锚固与全长锚固均有助于锚杆发挥锚固阻裂效应,其强化顺序依次为全长锚固>端头锚固>让压+端头锚固,后者因让压结构补偿了裂纹扩展空间,弱化了锚固阻裂效应;③冲击载荷作用下加锚岩体变形破坏过程具有裂纹孕育阶段、裂纹扩展阶段、锚杆承载阶段3个阶段,高预紧力矩与全长锚固时锚杆轴向应力在裂纹扩展阶段增速最明显,锚杆锚固阻裂效应最明显。研究成果对深部动载巷道锚固支护工程具有一定的理论指导及借鉴意义。

      Abstract:

      Under the action of mining stresses and impact dynamic loads, the development, expansion and instability of the primary fissures in the surrounding rock of deep roadways are an important cause for the dynamic disasters of the deep surrounding rock, and increasing the integrity of broken surrounding rock and inhibiting the re-expansion of the primary fissures by using the anchor supports are an important method to prevent the dynamic disasters in the surrounding rock. To this end, the impact dynamic load tests are performed on CCNBD specimens of prestressing anchor under different preloading moments of end anchor, and three anchoring methods of end anchor, full anchor and yield pressure + end anchor are adopted using the split Hopkinson pressure bar test system. The effects of various factors on the dynamic fracture toughness, crack initiation time and crack expansion rate of the anchored rock mass are analyzed to reveal the crack-resistance effects of the prestressed anchors under impact loads. The results show that: (1) The crack-resistance effects of the prestressed anchors improve the macro-dynamic fracture toughness of the anchored rock mass and delay the micro-crack initiation time and reduce the expansion rate. (2) Both the high preloading end anchorage and the full-length anchorage help anchors develop the crack-resistance effects. Their strengthening order is full-length anchorage > end anchorage > yield pressure + end anchorage. The third method weakens the crack-resistance effects because the yield pressure structures compensates for the crack expansion space. (3) The deformation and damage process of anchored rock mass under impact loads has three stages: crack breeding stage, crack expansion stage and anchor bearing stage. The axial stress of the anchor rod with high preloading moment and full-length anchoring has the most apparent growth rate in the crack expansion stage, and the crack-resistance effects are the most obvious. The research results have some theoretical guidance and reference significance for the anchorage support projects of deep dynamic load roadways.

    • 图  1   含裂隙试件制备与尺寸

      Figure  1.   Preparation and sizes of specimens containing cracks

      图  2   试件中应变片监测布置

      Figure  2.   Arrangement of strain gauge monitoring in specimens

      图  3   SHPB动载冲击试验系统

      Figure  3.   SHPB dynamic load impact test system

      图  4   分离式霍普金森试验系统示意图

      Figure  4.   Schematic diagram of SHPB test system

      图  5   试件两侧动态应力

      Figure  5.   Dynamic stresses on two sides of specimen

      图  6   加锚岩体典型应力-时程曲线

      Figure  6.   Typical stress-time curves of anchored rock mass

      图  7   平均峰值应力

      Figure  7.   Average peak stresses

      图  8   加锚岩体动态断裂韧性

      Figure  8.   Dynamic fracture toughnesses of anchored rock mass

      图  9   裂纹扩展应变片监测原理

      Figure  9.   Monitoring principle of crack extension strain gauge

      图  10   不同预紧力矩下加锚岩体典型裂纹扩展时程曲线

      Figure  10.   Typical time-history curves of crack expansion of anchored rock mass under different preloading torques

      图  11   不同锚固方式加锚岩体典型裂纹扩展时程曲线

      Figure  11.   Typical time-history curves of crack expansion of anchored rock mass by different anchoring methods

      图  12   典型加锚岩体起裂时间

      Figure  12.   Typical fracture initiation time of anchored rock mass

      图  13   加锚岩体典型裂纹扩展速度与裂纹尖端位置关系曲线

      Figure  13.   Typical crack expansion rate of anchored rock mass versus position of crack tip

      图  14   不同预紧力矩与锚固方式下裂纹平均扩展速度

      Figure  14.   Average crack expansion speeds under different preloading torque and anchoring method

      图  15   不同预紧力矩典型加锚岩体轴力时程曲线

      Figure  15.   Time-history curves of axial force of anchored rock mass under different preloading moments

      图  16   不同锚固方式典型加锚岩体轴力时程曲线

      Figure  16.   Time-history curves of axial force of a typical anchored rock mass by different anchoring methods

      图  17   加锚岩体冲击动载加载过程示意图

      Figure  17.   Time-history curves of axial force of a typical anchored rock mass by different anchoring methods

      表  1   试件制备尺寸

      Table  1   Sizes of specimen

      直径D/mm 厚度B/mm 直切槽初始尺寸a0/mm 直切槽最终尺寸a1/mm 刀具半径as/mm
      50 25 7 19 20
      下载: 导出CSV

      表  2   锚固系统力学参数

      Table  2   Mechanical parameters of anchoring system

      锚杆类型 直径/mm 延伸率/% 弹性模量/GPa 抗拉强度/MPa 屈服强度/MPa
      现场锚杆 18 ≥20 200 ≥490 ≥335
      模拟锚杆 3 ≥40 193 ≥515 ≥205
      下载: 导出CSV

      表  3   预紧力矩对照

      Table  3   Comparison of preloading torques (单位: N·m)

      实验室预紧力矩 0 2 4 6 8 10
      现场预紧力矩 0 40 80 120 160 200
      下载: 导出CSV

      表  4   试验方案

      Table  4   Test programs

      试件编号 厚度D/mm 直径B/mm 预紧力矩/(N·m) 锚固方式
      W-0-1 25.0 50.0 0 无锚
      W-0-2 25.0 50.0
      W-0-3 25.1 50.0
      D-0-1 24.9 50.0 0 端头锚固
      D-0-2 25.0 50.1
      D-0-3 25.0 50.0
      D-2-1 25.0 50.0 2 端头锚固
      D-2-2 25.0 50.0
      D-2-3 25.0 49.9
      D-4-1 25.1 50.0 4 端头锚固
      D-4-2 25.0 50.0
      D-4-3 25.0 50.0
      D-6-1 24.8 50.1 6 端头锚固
      D-6-2 25.0 50.0
      D-6-3 25.0 50.0
      D-8-1 25.1 50.0 8 端头锚固
      D-8-2 25.0 50.0
      D-8-3 25.0 50.0
      D-10-1 25.0 49.8 10 端头锚固
      D-10-2 25.1 50.0
      D-10-3 25.0 50.1
      Q-6-1 25.0 50.0 6 全长锚固
      Q-6-2 24.9 49.9
      Q-6-3 25.0 50.0
      R-6-1 25.0 50.0 6 让压+端头锚固
      R-6-2 25.0 50.0
      R-6-3 24.9 50.0
      下载: 导出CSV
    • [1] 刘泉声, 雷广峰, 彭星新. 深部裂隙岩体锚固机制研究进展与思考[J]. 岩石力学与工程学报, 2016, 35(2): 312-332. https://www.cnki.com.cn/Article/CJFDTOTAL-YSLX201602013.htm

      LIU Quansheng, LEI Guangfeng, PENG Xingxin. Advance and review on the anchoring mechanism in deep fractured rock mass[J]. Chinese Journal of Rock Mechanics and Engineering, 2016, 35(2): 312-332. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YSLX201602013.htm

      [2] 齐庆新, 李一哲, 赵善坤, 等. 我国煤矿冲击地压发展70年: 理论与技术体系的建立与思考[J]. 煤炭科学技术, 2019, 47(9): 1-40. https://www.cnki.com.cn/Article/CJFDTOTAL-MTKJ201909001.htm

      QI Qingxin, LI Yizhe, ZHAO Shankun, et al. Seventy years development of coal mine rockburst in China: establishment and consideration of theory and technology system[J]. Coal Science and Technology, 2019, 47(9): 1-40. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-MTKJ201909001.htm

      [3] 康红普. 我国煤矿巷道锚杆支护技术发展60年及展望[J]. 中国矿业大学学报, 2016, 45(6): 1071-1081. https://www.cnki.com.cn/Article/CJFDTOTAL-ZGKD201606001.htm

      KANG Hongpu. Sixty years development and prospects of rock bolting technology for underground coal mine roadways in China[J]. Journal of China University of Mining & Technology, 2016, 45(6): 1071-1081. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-ZGKD201606001.htm

      [4] 张波, 李术才, 杨学英, 等. 含交叉裂隙节理岩体锚固效应及破坏模式[J]. 岩石力学与工程学报, 2014, 33(5): 996-1003. https://www.cnki.com.cn/Article/CJFDTOTAL-YSLX201405015.htm

      ZHANG Bo, LI Shucai, YANG Xueying, et al. Bolting effect and failure modes of jointed rock masses with cross-cracks[J]. Chinese Journal of Rock Mechanics and Engineering, 2014, 33(5): 996-1003. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YSLX201405015.htm

      [5] 周辉, 徐荣超, 张传庆, 等. 预应力锚杆锚固止裂效应的试验研究[J]. 岩石力学与工程学报, 2015, 34(10): 2027-2037. https://www.cnki.com.cn/Article/CJFDTOTAL-YSLX201510011.htm

      ZHOU Hui, XU Rongchao, ZHANG Chuanqing, et al. Experimental study of crack prevention effect of pre-stressed bolt anchoring[J]. Chinese Journal of Rock Mechanics and Engineering, 2015, 34(10): 2027-2037. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YSLX201510011.htm

      [6] 王平, 冯涛, 朱永建, 等. 加锚预制裂隙类岩体锚固机制试验研究及其数值模拟[J]. 岩土力学, 2016, 37(3): 793-801. https://www.cnki.com.cn/Article/CJFDTOTAL-YTLX201603024.htm

      WANG Ping, FENG Tao, ZHU Yongjian, et al. Experimental study and numerical simulation of anchoring mechanism of anchored rocklike material with prefabricated fracture[J]. Rock and Soil Mechanics, 2016, 37(3): 793-801. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YTLX201603024.htm

      [7] 武东阳, 蔚立元, 苏海健, 等. 单轴压缩下加锚裂隙类岩石试块裂纹扩展试验及PFC3D模拟[J]. 岩土力学, 2021, 42(6): 1681-1692. https://www.cnki.com.cn/Article/CJFDTOTAL-YTLX202106021.htm

      WU Dongyang, YU Liyuan, SU Haijian, et al. Experimental study and PFC3D simulation on crack propagation of fractured rock-like specimens with bolts under uniaxial compression[J]. Rock and Soil Mechanics, 2021, 42(6): 1681-1692. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YTLX202106021.htm

      [8] 蒋宇静, 张孙豪, 栾恒杰, 等. 恒定法向刚度边界条件下锚固节理岩体剪切特性试验研究[J]. 岩石力学与工程学报, 2021, 40(4): 663-675. https://www.cnki.com.cn/Article/CJFDTOTAL-YSLX202104002.htm

      JIANG Yujing, ZHANG Sunhao, LUAN Hengjie, et al. Experimental study on shear characteristics of bolted rock joints under constant normal stiffness boundary conditions[J]. Chinese Journal of Rock Mechanics and Engineering, 2021, 40(4): 663-675. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YSLX202104002.htm

      [9] 刘学生, 宋世琳, 范德源, 等. 深部超大断面硐室群围岩变形破裂演化规律试验研究[J]. 采矿与安全工程学报, 2020, 37(1): 40-49. https://www.cnki.com.cn/Article/CJFDTOTAL-KSYL202001005.htm

      LIU Xuesheng, SONG Shilin, FAN Deyuan, et al. Experimental study on deformation and failure evolution of surrounding rock for deep super-large section chamber group[J]. Journal of Mining & Safety Engineering, 2020, 37(1): 40-49. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-KSYL202001005.htm

      [10] 谭云亮, 郭伟耀, 赵同彬, 等. 深部煤巷帮部失稳诱冲机理及"卸-固"协同控制研究[J]. 煤炭学报, 2020, 45(1): 66-81. https://www.cnki.com.cn/Article/CJFDTOTAL-MTXB202001008.htm

      TAN Yunliang, GUO Weiyao, ZHAO Tongbin, et al. Coal rib burst mechanism in deep roadway and "stress relief-support reinforcement" synergetic control and prevention[J]. Journal of China Coal Society, 2020, 45(1): 66-81. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-MTXB202001008.htm

      [11] 吴拥政, 陈金宇, 焦建康, 等. 冲击载荷作用下锚固围岩损伤破坏机制[J]. 煤炭学报, 2018, 43(9): 2389-2397. https://www.cnki.com.cn/Article/CJFDTOTAL-MTXB201809003.htm

      WU Yongzheng, CHEN Jinyu, JIAO Jiankang, et al. Damage and failure mechanism of anchored surrounding rock with impact loading[J]. Journal of China Coal Society, 2018, 43(9): 2389-2397. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-MTXB201809003.htm

      [12] 邱鹏奇, 宁建国, 王俊, 等. 冲击动载作用下加锚岩体抗冲时效试验研究[J]. 煤炭学报, 2021, 46(11): 3433-3444. https://www.cnki.com.cn/Article/CJFDTOTAL-MTXB202111004.htm

      QIU Pengqi, NING Jianguo, WANG Jun, et al. Experimental study on EPRD(effectiveness for a given period to resistance dynamic load) of bolted rock under dynamic load[J]. Journal of China Coal Society, 2021, 46(11): 3433-3444. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-MTXB202111004.htm

      [13]

      WU Y, YIN T B, LIU X L, et al. Determination of dynamic modeⅠfracture toughness of rock at ambient high temperatures using notched semi-circular bend method[J]. Transactions of Nonferrous Metals Society of China, 2022, 32(9): 3036-3050.

      [14] 李壮, 王俊, 宁建国, 等. 预紧力对锚固体抗动载冲击能力影响的试验研究[J]. 中国矿业大学学报, 2021, 50(3): 459-468. https://www.cnki.com.cn/Article/CJFDTOTAL-ZGKD202103007.htm

      LI Zhuang, WANG Jun, NING Jianguo, et al. Experimental research on influence of pre-tension on dynamic load impact resistance of anchorage body[J]. Journal of China University of Mining & Technology, 2021, 50(3): 459-468. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-ZGKD202103007.htm

      [15] 宁建国, 李壮, 王俊, 等. 动态拉应力波作用下锚固体力学响应试验研究[J]. 采矿与安全工程学报, 2022, 39(4): 731-740. https://www.cnki.com.cn/Article/CJFDTOTAL-KSYL202204010.htm

      NING Jianguo, LI Zhuang, WANG Jun, et al. Experimental study on mechanical response of anchored body under dynamic tensile stress wave[J]. Journal of Mining & Safety Engineering, 2022, 39(4): 731-740. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-KSYL202204010.htm

      [16]

      FOWELL R J. Suggested method for determining mode I fracture toughness using Cracked Chevron Notched Brazilian Disc (CCNBD) specimens[J]. International Journal of Rock Mechanics and Mining Sciences & Geomechanics Abstracts, 1995, 32(1): 57-64.

      [17] 范天佑. 断裂动力学原理与应用[M]. 北京: 北京理工大学出版社, 2006.

      FAN Tianyou. Principle and Application of Fracture Dynamics[M]. Beijing: Beijing Insititute of Technology Press, 2006. (in Chinese)

      [18]

      ISM Testing Commission. Suggested methods for determining the fracture toughness of rock[J]. International Journal of Rock Mechanics and Mining Sciences & Geomechanics Abstracts, 1988, 25(2): 71-96.

      [19]

      DAI F, XIA K W, TANG L Z. Rate dependence of the flexural tensile strength of Laurentian granite[J]. International Journal of Rock Mechanics and Mining Sciences, 2010, 47(3): 469-475.

      [20]

      FOWELL R J, XU C. The use of the cracked Brazilian disc geometry for rock fracture investigations[J]. International Journal of Rock Mechanics and Mining Sciences & Geomechanics Abstracts, 1994, 31(6): 571-579.

      [21]

      GUO H, AZIZ N I, SCHMIDT L C. Rock fracture-toughness determination by the Brazilian test[J]. Engineering Geology, 1993, 33(3): 177-188.

      [22] 王飞, 王蒙, 朱哲明, 等. 冲击荷载下岩石裂纹动态扩展全过程演化规律研究[J]. 岩石力学与工程学报, 2019, 38(6): 1139-1148. https://www.cnki.com.cn/Article/CJFDTOTAL-YSLX201906006.htm

      WANG Fei, WANG Meng, ZHU Zheming, et al. Study on evolution law of rock crack dynamic propagation in complete process under impact loading[J]. Chinese Journal of Rock Mechanics and Engineering, 2019, 38(6): 1139-1148. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YSLX201906006.htm

    图(17)  /  表(4)
    计量
    • 文章访问数:  419
    • HTML全文浏览量:  55
    • PDF下载量:  108
    • 被引次数: 0
    出版历程
    • 收稿日期:  2022-10-31
    • 网络出版日期:  2023-04-05

    目录

      HU Hao

      1. On this Site
      2. On Google Scholar
      3. On PubMed

      /

      返回文章
      返回