Reinforcement calculation of concrete slab in concrete faced rockfill dams
-
摘要: 混凝土面板应力变形安全是面板堆石坝工程的关键,然而传统面板坝分析方法大多未考虑面板的配筋效应,实际面板配筋方案制定缺乏理论依据。提出了基于限裂理念的混凝土面板配筋计算方法:采用非协调网格计算技术精细模拟混凝土面板应力,采用钢筋埋置单元模拟钢筋加固作用,采用损伤模型模拟混凝土材料损伤开裂行为,通过引入与几何尺寸、钢筋应力相关的裂缝宽度公式实现混凝土面板限裂配筋计算。提出的方法可定量研究面板限裂配筋,为复杂条件下面板坝配筋设计提供理论依据。文中以正在施工建设的大石峡特高面板坝为例,初步研究了该坝的面板配筋方案。Abstract: The stress and deformation safety of the concrete slab is crucial to the concrete faced rockfill dams (CFRDs), however, most of the traditional methods do not consider the effects of the reinforcement in slab, therefore, the calculated results can not provide enough information to the design of slab reinforcement. In this study, a method for calculating the slab reinforcement based on the concept of crack width limit is proposed: the non-coordinated grid computing technology is used to refinedly simulate the stress of the concrete slab, the embedded steel element is used to simulate the reinforcement effects, and the damage model is used to simulate the cracking of the slab concrete. By introducing a formula for crack width related to geometric size and rebar stress, and setting the crack width limit, the reinforcement calculation is realized. The proposed method can be used to quantitatively study the slab reinforcement and provide a theoretical basis for reinforcement design under complex conditions. The Dashixia CFRD under construction is taken as an example and its slab reinforcement design is preliminarily studied.
-
-
表 1 筑坝料“南水”模型参数
Table 1 Parameters of "NHRI" model
坝体分区 ρd/(g·cm-3) φ0/(°) Δφ/(°) k n Rf cd/% nd Rd 垫层区(2A) 2.31 49.3 5.9 920 0.29 0.67 0.49 0.45 0.65 主砂砾石区(3BA、3BB) 2.27 50.1 6.3 1294 0.32 0.74 0.30 0.67 0.72 主堆石区(3BC、3C2) 2.22 53.2 9.0 1104 0.22 0.65 0.40 0.72 0.64 下游堆石区(3C1) 2.22 52.6 8.7 1044 0.21 0.66 0.46 0.70 0.66 增模区 2.28 69.1 17.9 0.14 3928.7 0.35 0.08 0.44 0.11 表 2 筑坝料流变模型参数
Table 2 Parameters of creep model
坝体分区 α b /% c/% d /% m1 m2 m3 垫层区(2A) 0.006 0.130 0.028 0.277 0.355 0.600 0.700 主砂砾区(3BA、3BB) 0.0062 0.114 0.025 0.241 0.351 0.578 0.696 主堆石料区(3BC、3C2) 0.0055 0.138 0.030 0.363 0.358 0.629 0.783 下游堆石区(3C1) 0.0054 0.140 0.032 0.365 0.358 0.629 0.783 表 3 混凝土损伤模型参数
Table 3 Parameters for damage model
Ec/104 MPa fcr/MPa εcr αc ftr/MPa εtr αt 3.0 20.1 1.470×10-3 0.74 2.01 9.5×10-5 1.25 表 4 不同配筋方案面板裂缝宽度
Table 4 Cracks width under different reinforcements scheme
配筋加强区Ⅰ 配筋加强区Ⅱ 水平向配筋率/% 纵向裂缝最大宽度/mm 顺坡向配筋率/% 水平向最大裂缝宽/mm 原方案 0.587 0.32 0.587 0.24 加强方案 0.783 0.20 0.691 0.18 -
[1] 罗福海, 张保军, 夏界平. 水布垭面板堆石坝施工期裂缝成因及处理措施[J]. 水利水电快报, 2010, 31(12): 5-8. https://www.cnki.com.cn/Article/CJFDTOTAL-SLSK201012002.htm LUO Fuhai, ZHANG Baojun, XIA Jieping. Causes and treatment measures of cracks in Shuibuya concrete face rockfill dam during construction[J]. Express Water Resources & Hydropower Information, 2010, 31(12): 5-8. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-SLSK201012002.htm
[2] 混凝土面板堆石坝设计规范: N/T 10871—2021[S]. 北京: 中国水利水电出版社, 2022. Code for Design of Concrete Face Rockfill Dams: N/T 10871—2021[S]. Beijing: China Water & Power Press, 2022. (in Chinese)
[3] 钟红, 林皋, 胡志强. 有限元计算中疏密网格过渡方法研究[J]. 计算力学学报, 2007, 24(6): 887-891, 898. https://www.cnki.com.cn/Article/CJFDTOTAL-JSJG200706030.htm ZHONG Hong, LIN Gao, HU Zhiqiang. Two methods for transition between coarse and fine finite elements[J]. Chinese Journal of Computational Mechanics, 2007, 24(6): 887-891, 898. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-JSJG200706030.htm
[4] 周墨臻, 张丙印, 王伟. 高面板堆石坝软缝接触计算模型及其数值实现[J]. 岩石力学与工程学报, 2016, 35(增刊1): 2803-2810. https://www.cnki.com.cn/Article/CJFDTOTAL-YSLX2016S1024.htm ZHOU Mozhen, ZHANG Bingyin, WANG Wei. Algorithm and simulation methods for the soft longitudinal joint of the concrete faces in high concrete-faced rockfill dams[J]. Chinese Journal of Rock Mechanics and Engineering, 2016, 35(S1): 2803-2810. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YSLX2016S1024.htm
[5] 周墨臻, 张丙印, 张宗亮, 等. 超高面板堆石坝面板挤压破坏机理及数值模拟方法研究[J]. 岩土工程学报, 2015, 37(8): 1426-1432. doi: 10.11779/CJGE201508010 ZHOU Mozhen, ZHANG Bingyin, ZHANG Zongliang, et al. Mechanisms and simulation methods for extrusion damage of concrete faces of high concrete-faced rockfill dams[J]. Chinese Journal of Geotechnical Engineering, 2015, 37(8): 1426-1432. (in Chinese) doi: 10.11779/CJGE201508010
[6] 孔宪京, 陈楷, 邹德高, 等. 一种高效的FE-PSBFE耦合方法及在岩土工程弹塑性分析中的应用[J]. 工程力学, 2018, 35(6): 6-14. https://www.cnki.com.cn/Article/CJFDTOTAL-GCLX201806004.htm KONG Xianjing, CHEN Kai, ZOU Degao, et al. An efficient fe-psbfe coupled method and its application to the elasto-plastic analysis of geotechnical engineering structures[J]. Engineering Mechanics, 2018, 35(6): 6-14. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-GCLX201806004.htm
[7] 邹德高, 刘锁, 陈楷, 等. 基于四叉树网格和多边形比例边界有限元方法的岩土工程非线性静动力分析[J]. 岩土力学, 2017, 38(增刊2): 33-40. https://www.cnki.com.cn/Article/CJFDTOTAL-YTLX2017S2005.htm ZOU Degao, LIU Suo, CHEN Kai, et al. Nonlinear static and dynamic analysis for geotechnical engineering based on quadtree mesh and polygon scaled boundary finite element method[J]. Rock and Soil Mechanics, 2017, 38(S2): 33-40. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YTLX2017S2005.htm
[8] 邹德高, 陈楷, 刘锁, 等. 非线性比例边界有限元在面板坝分析中的应用[J]. 土木与环境工程学报, 2019, 41(3): 11-18. https://www.cnki.com.cn/Article/CJFDTOTAL-JIAN201903002.htm ZOU Degao, CHEN Kai, LIU Suo, et al. Application of nonlinear scaled boundary polygon element method in analysis of concrete face rockfill dam[J]. Journal of Civil and Environmental Engineering, 2019, 41(3): 11-18. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-JIAN201903002.htm
[9] 魏匡民, 陈生水, 李国英, 等. 位移多点约束法在面板堆石坝精细模拟中的应用研究[J]. 岩土工程学报, 2020, 42(4): 616-623. doi: 10.11779/CJGE202004003 WEI Kuangmin, CHEN Shengshui, LI Guoying, et al. Application of displacement multi-point constraint refinement method in simulation of concrete-faced rockfill dams[J]. Chinese Journal of Geotechnical Engineering, 2020, 42(4): 616-623. (in Chinese) doi: 10.11779/CJGE202004003
[10] 王勖成. 有限单元法[M]. 北京: 清华大学出版社, 2003. WANG Xucheng. Finite Element Method[M]. Beijing: Tsinghua University Press, 2003. (in Chinese)
[11] 陈国荣. 有限单元法原理及应用[M]. 北京: 科学出版社, 2009. CHEN Guorong. Principle and Application of Finite Element Method[M]. Beijing: Science Press, 2009. (in Chinese)
[12] 孔宪京, 屈永倩, 邹德高, 等. 强震作用下面板堆石坝跨尺度面板开裂演化分析[J]. 岩土工程学报, 2020, 42(6): 989-996. doi: 10.11779/CJGE202006001 KONG Xianjing, QU Yongqian, ZOU Degao, et al. Cross-scale crack evolution analysis for face slab in concrete faced rockfill dams under strong earthquake[J]. Chinese Journal of Geotechnical Engineering, 2020, 42(6): 989-996. (in Chinese) doi: 10.11779/CJGE202006001
[13] 巫昌海, 汪基伟. 混凝土三维钢筋埋置组合式有限单元模型及其网格自动生成[J]. 计算机辅助设计与图形学学报, 2000, 12(10): 761-764. https://www.cnki.com.cn/Article/CJFDTOTAL-JSJF200010011.htm WU Changhai, WANG Jiwei. Three-dimensional embedded finite element model of reinforced concrete and its automatic mesh generation[J]. Jouraal of Computer Aided Design & Computer Graphics, 2000, 12(10): 761-764. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-JSJF200010011.htm
[14] XU B, ZOU D G, KONG X J, et al. Dynamic Damage evaluation on the slabs of the concrete faced rockfill dam with the plastic-damage model[J]. Computers and Geotechnics, 2015, 65: 258-265. http://www.onacademic.com/detail/journal_1000037433272510_9a3e.html
[15] CEN W J, WEN L S, ZHANG Z Q, et al. Numerical simulation of seismic damage and cracking of concrete slabs of high concrete face rockfill dams[J]. Water Science and Engineering, 2016, 9(3): 205-211. http://qikan.cqvip.com/Qikan/Article/Detail?id=7000080633
[16] 混凝土结构设计规范: GB 50010—2010[S]. 北京: 中国建筑工业出版社, 2011. Code for Design of Concrete Structures: GB 50010—2010[S]. Beijing: China Architecture & Building Press, 2011. (in Chinese)
[17] 朱百里, 沈珠江. 计算土力学[M]. 上海: 上海科学技术出版社, 1990. ZHU Baili, SHEN Zhujiang. Computational Soil Mechanics[M]. Shanghai: Shanghai Science and Technology Press, 1990. (in Chinese)
[18] 李国英, 米占宽, 傅华, 等. 混凝土面板堆石坝堆石料流变特性试验研究[J]. 岩土力学, 2004, 25(11): 1712-1716. https://www.cnki.com.cn/Article/CJFDTOTAL-YTLX200411008.htm LI Guoying, MI Zhankuan, FU Hua, et al. Experimental studies on rheological behaviors for rockfills in concrete faced rockfill dam[J]. Rock and Soil Mechanics, 2004, 25(11): 1712-1716. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YTLX200411008.htm
[19] 顾淦臣, 沈长松, 岑威钧. 土石坝地震工程学[M]. 北京: 中国水利水电出版社, 2009. GU Ganchen, SHEN Changsong, CEN Weijun. Earthquake Engineering for Earthrock Dams[M]. Beijing: China Water & Power Press, 2009. (in Chinese)
[20] 高瑞平. 混凝土构件裂缝宽度计算方法研究[D]. 南京: 东南大学, 2008. GAO Ruiping. Study on Calculation Method of Crack Width of Concrete Members[D]. Nanjing: Southeast University, 2008. (in Chinese)
[21] 丁旭柳, 伍鹤皋, 朱忠华. 钢筋混凝土压力隧洞裂缝宽度计算方法的探讨[J]. 武汉大学学报(工学版), 2001, 34(2): 24-27. https://www.cnki.com.cn/Article/CJFDTOTAL-WSDD200102006.htm DING Xuliu, WU Hegao, ZHU Zhonghua. Study on computational method of crack width of reinforced concrete pressure tunnels[J]. Engineering Journal of Wuhan University, 2001, 34(2): 24-27. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-WSDD200102006.htm
[22] 兰伟钦, 肖明. 考虑钢筋滑移效应的高压隧洞衬砌配筋计算方法[J]. 水电与新能源, 2021, 35(4): 66-71. https://www.cnki.com.cn/Article/CJFDTOTAL-HBFD202104016.htm LAN Weiqin, XIAO Ming. On the reinforcement calculation of high-pressure tunnel lining considering the slip effect of reinforcement[J]. Hydropower and New Energy, 2021, 35(4): 66-71. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-HBFD202104016.htm
-
其他相关附件