• 全国中文核心期刊
  • 中国科技核心期刊
  • 美国工程索引(EI)收录期刊
  • Scopus数据库收录期刊

水平排水板真空脱水-固化联合方法处理疏浚淤泥的试验研究

宋丁豹, 蒲诃夫, 张纯雪, 李展毅, 邱金伟, 陈文博

宋丁豹, 蒲诃夫, 张纯雪, 李展毅, 邱金伟, 陈文博. 水平排水板真空脱水-固化联合方法处理疏浚淤泥的试验研究[J]. 岩土工程学报, 2023, 45(9): 1897-1906. DOI: 10.11779/CJGE20220607
引用本文: 宋丁豹, 蒲诃夫, 张纯雪, 李展毅, 邱金伟, 陈文博. 水平排水板真空脱水-固化联合方法处理疏浚淤泥的试验研究[J]. 岩土工程学报, 2023, 45(9): 1897-1906. DOI: 10.11779/CJGE20220607
SONG Dingbao, PU Hefu, ZHANG Chunxue, LI Zhanyi, QIU Jinwei, CHEN Wenbo. Experimental investigation on prefabricated horizontal drain-based vacuum dewatering-solidification combined method for treatment of dredged slurry[J]. Chinese Journal of Geotechnical Engineering, 2023, 45(9): 1897-1906. DOI: 10.11779/CJGE20220607
Citation: SONG Dingbao, PU Hefu, ZHANG Chunxue, LI Zhanyi, QIU Jinwei, CHEN Wenbo. Experimental investigation on prefabricated horizontal drain-based vacuum dewatering-solidification combined method for treatment of dredged slurry[J]. Chinese Journal of Geotechnical Engineering, 2023, 45(9): 1897-1906. DOI: 10.11779/CJGE20220607

水平排水板真空脱水-固化联合方法处理疏浚淤泥的试验研究  English Version

基金项目: 

国家重点研发计划项目 2019YFC1806000

长江科学院开放研究基金项目 CKWV2019730/KY

国家自然科学基金项目 51878312

国家自然科学基金项目 52078235

详细信息
    作者简介:

    宋丁豹(1990—),男,博士,主要从事软土处理、地下填埋结构物-土体相互作用的研究工作。E-mail: dingbao_song@126.com

    通讯作者:

    蒲诃夫, E-mail: puh@hust.edu.cn

  • 中图分类号: TU431

Experimental investigation on prefabricated horizontal drain-based vacuum dewatering-solidification combined method for treatment of dredged slurry

  • 摘要: 疏浚淤泥的含水率高、渗透性低、压缩性高、承载力低,难以快速高效地处理和处置。对此,介绍了一种复合方法,即基于水平排水板的真空脱水-固化联合方法,简称PHDVDS,并通过模型试验研究了PHDVDS方法处理高含水率疏浚淤泥的脱水减量效果和加固效果。模型试验分别采用石灰激发高炉矿渣微粉和水泥为固化剂,并与单一真空脱水方法(无固化剂)和直接固化方法(无真空脱水,以水泥为固化剂)的处理效果进行了对比。在模型试验真空脱水阶段,监测了真空脱水量和淤泥体积变化,即减量效果;在真空脱水结束后,取固化土样进行养护并测试了不同养护龄期土样的无侧限抗压强度,并结合固化土微观结构(XRD、SEM和MIP试验)分析了PHDVDS方法的作用机理。结果表明,与单一真空脱水法和直接固化法相比,PHDVDS方法的脱水减量效果和加固效果均更加优越。仅2 d真空脱水后,PHDVDS比单一真空脱水法的减量效果提高了7%~43%;其固化土样60 d无侧限抗压强度比直接固化法增大了6~54倍。
    Abstract: The dredged slurry exhibits the characteristics of high water content, low permeability, high compressibility and low or negligible bearing capacity, and is difficult to be rapidly treated and disposed of. Aiming at this problem, a composite method, i.e., the combined method of prefabricated horizontal drain-based vacuum dewatering and solidification, abbreviated as PHDVDS, is introduced, and a series of model tests are carried out to investigate the volume reduction and reinforcement effects of the PHDVDS method, with lime-activated ground blast furnace slag (GGBS) and cement as the binder, respectively. The performance of PHDVDS method is compared with that of the pure vacuum dewatering method (no binder) and the pure solidification method (no vacuum dewatering, using cement as the binder). During the vacuum dewatering stage of the model tests, the mass of discharged water and the settlement, i.e., volume reduction, are monitored, after which the unconfined compressive strength (UCS) of soil samples at different curing ages is tested, and the development of UCS is analyzed from microstructural point of view by the X-ray diffraction (XRD), scanning electron microscopy (SEM) and mercury intrusion porosimetry (MIP). The results indicate that, compared with the pure vacuum dewatering method and pure solidification method, the PHDVDS method demonstrates significantly better volume reduction efficacy and significantly better reinforcement efficacy. For instance, the volume reduction by the PHDVDS method after two-day vacuum dewatering is 7%~43%, higher than that by the pure vacuum dewatering method. The 60-day UCS of the PHDVDS-treated soil is 6 times~54 times higher than that of the pure solidification method.
  • 图  1   模型试验装置示意图

    Figure  1.   Schematic diagram of model test apparatus

    图  2   真空脱水量随时间的变化

    Figure  2.   Variation of water discharged by vacuum with time

    图  3   脱水速率随时间的变化

    Figure  3.   Variation of rate of water discharge with time

    图  4   淤泥体积减量比随时间的变化

    Figure  4.   Variation of reduction ratio of slurry with time

    图  5   不同处理方法的固化土样的无侧限抗压强度

    Figure  5.   Unconfined compressive strengths of soils solidified by different methods

    图  6   石灰/高炉矿渣微粉比例对固化土强度的影响

    Figure  6.   Effects of Ca(OH)2/GGBS ratio on strength of solidified soils

    图  7   不同固化土样的XRD结果

    Figure  7.   XRD patterns of different solidified soil

    图  8   VSLG4固化土样养护60 d的SEM结果

    Figure  8.   SEM of VSLG4-treated soil at 60 days of curing

    图  9   VSC固化土样养护60 d的SEM结果

    Figure  9.   SEM of VSC-treated soil at 60 days of curing

    图  10   SC固化土样养护60 d的SEM结果

    Figure  10.   SEM of SC-treated soil at 60 days of curing

    图  11   不同固化土样的累积孔隙体积曲线

    Figure  11.   Curves of cumulative pore volume of different solidified soils

    图  12   不同固化土样的孔径分布密度

    Figure  12.   Pore-size distribution densities of different solidified soils

    表  1   模型试验方案

    Table  1   Program of model tests

    组别 固化剂
    类型
    固化剂掺量/% 石灰/高炉矿渣微粉/% 真空
    荷载/kPa
    VSLG1 石灰-高炉矿渣微粉 10 5 -80
    VSLG2 石灰-高炉矿渣微粉 10 10 -80
    VSLG3 石灰-高炉矿渣微粉 10 20 -80
    VSLG4 石灰-高炉矿渣微粉 10 40 -80
    VSC 水泥 10 -80
    SC 水泥 10
    VD -80
    下载: 导出CSV

    表  2   土体渗透系数随时间的变化

    Table  2   Variation of soil permeability with time

    工况 渗透系数 k/(10-8 m·s-1)
    0.5 d 1.5 d 2.5 d 3.5 d 4.5 d
    Aw = 0% 1.10 1.10 1.10 1.10 1.10
    Aw = 10% 2.96 1.47 0.82 0.79 0.77
    下载: 导出CSV
  • [1] 朱伟, 闵凡路, 吕一彦, 等. "泥科学与应用技术"的提出及研究进展[J]. 岩土力学, 2013, 34(11): 3041-3054. https://www.cnki.com.cn/Article/CJFDTOTAL-YTLX201311001.htm

    ZHU Wei, MIN Fanlu, LÜ Yiyan, et al. Subject of"mud science and application technology"and its research progress[J]. Rock and Soil Mechanics, 2013, 34(11): 3041-3054. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YTLX201311001.htm

    [2] 王军, 王逸杰, 刘飞禹, 等. 间歇式真空预压联合电渗加固吹填软土试验[J]. 中国公路学报, 2016, 29(10): 37-45. https://www.cnki.com.cn/Article/CJFDTOTAL-ZGGL201610005.htm

    WANG Jun, WANG Yijie, LIU Feiyu, et al. Test of reinforcement by intermittent vacuum preloading- electroosmosis in dredger soft clay[J]. China Journal of Highway and Transport, 2016, 29(10): 37-45. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-ZGGL201610005.htm

    [3]

    ZHANG R, DONG C, LU Z, et al. Strength characteristics of hydraulically dredged mud slurry treated by flocculation- solidification combined method[J]. Construction and Building Materials, 2019, 228: 116742. doi: 10.1016/j.conbuildmat.2019.116742

    [4]

    ZHOU Y, CAI G, CHEESEMAN C, et al. Sewage sludge ash-incorporated stabilization/solidification for recycling and remediation of marine sediments[J]. Journal of Environmental Management, 2022, 301, 113877. doi: 10.1016/j.jenvman.2021.113877

    [5]

    WANG Q, KONG L, TSENG M L, et al. Solid waste material reuse analysis: filling the road subgrade with riverway silt and sediment[J]. Environmental Science and Pollution Research, 2022, 29(23): 35096-35109. doi: 10.1007/s11356-022-18650-z

    [6] 朱伟, 张春雷, 刘汉龙, 等. 疏浚泥处理再生资源技术的现状[J]. 环境科学与技术, 2002, 25(4): 39-41, 50. https://www.cnki.com.cn/Article/CJFDTOTAL-FJKS200204016.htm

    ZHU Wei, ZHANG Chunlei, LIU Hanlong, et al. The status quo of dredged spoils utilization[J]. Environmental Science and Technology, 2002, 25(4): 39-41, 50. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-FJKS200204016.htm

    [7]

    WANG J, HUANG G, FU H, et al. Vacuum preloading combined with multiple-flocculant treatment for dredged fill improvement[J]. Engineering Geology, 2019, 259, 105194. doi: 10.1016/j.enggeo.2019.105194

    [8]

    ZHU W, YAN J, YU G. Vacuum preloading method for land reclamation using hydraulic filled slurry from the sea: a case study in coastal China[J]. Ocean Engineering, 2018, 152: 286-299. doi: 10.1016/j.oceaneng.2018.01.063

    [9]

    CHU J, YAN S, LAM K P. Methods for improvement of clay slurry or sewage sludge[J]. Proceedings of the Institution of Civil Engineers-Ground Improvement, 2012, 165(4): 187-199. doi: 10.1680/grim.11.00015

    [10]

    CAI Y, QIAO H, WANG J, et al. Experimental tests on effect of deformed prefabricated vertical drains in dredged soil on consolidation via vacuum preloading[J]. Engineering Geology, 2017, 222: 10-19. doi: 10.1016/j.enggeo.2017.03.020

    [11] 姜彦彬, 何宁, 许滨华, 等. 真空预压负压分布规律模型试验研究[J]. 岩土工程学报, 2017, 39(10): 1874-1883. doi: 10.11779/CJGE201710016

    JIANG Yanbin, HE Ning, XU Binghua, et al. Model tests on negative pressure distribution in vacuum preloading[J]. Chinese Journal of Geotechnical Engineering, 2017, 39(10): 1874-1883. (in Chinese) doi: 10.11779/CJGE201710016

    [12]

    QIU Q, MO H, DONG Z. Vacuum pressure distribution and pore pressure variation in ground improved by vacuum preloading[J]. Canadian Geotechnical Journal, 2007, 44(12): 1433-1445. doi: 10.1139/T07-064

    [13]

    CHIBA T, SHINSHA HH, TANI Y. Development of a Vacuum Consolidation Method Employing Horizontal Drains[R]. Tokyo: Japan Dredging and Reclamation Engineering Association Tokyo, 1992.

    [14]

    NAGAHARA H, FUJIYAMA T, ISHIGURO T, et al. FEM analysis of high airport embankment with horizontal drains[J]. Geotextiles and Geomembranes, 2004, 22(1): 49-62.

    [15] 罗玉龙, 彭华, 何金平. 水平塑料排水带固结流态吹填土可行性研究[J]. 武汉理工大学学报, 2008, 30(6): 74-78. https://www.cnki.com.cn/Article/CJFDTOTAL-WHGY200806021.htm

    LUO Yulong, PENG Hua, HE Jinping. Research on the feasibility of consolidating flowed dredger fill by horizontal plastic drainage strip method[J]. Journal of Wuhan University of Technology, 2008, 30(6): 74-78. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-WHGY200806021.htm

    [16] 韦剑锋. 天津市滨海新区吹填土工程处理现状及技术改进试验研究: 吹填土水平辐射真空排水固结技术初探[J]. 工程勘察, 2008, 36(6): 20-22, 75. https://www.cnki.com.cn/Article/CJFDTOTAL-GCKC200806009.htm

    WEI Jianfeng. Experimental study on the dredger fill treat state and its technolgy improvement[J]. Geotechnical Investigation & Surveying, 2008, 36(6): 20-22, 75. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-GCKC200806009.htm

    [17]

    TANG Y X, MIYAZAKI Y, TSUCHIDA T. Practices of reused dredgings by cement treatment[J]. Soils and Foundations, 2001, 41(5): 129-143.

    [18] 丁建文, 洪振舜, 刘松玉. 疏浚淤泥流动固化土的压汞试验研究[J]. 岩土力学, 2011, 32(12): 3591-3596, 3603. https://www.cnki.com.cn/Article/CJFDTOTAL-YTLX201112009.htm

    DING Jianwen, HONG Zhenshun, LIU Songyu. Microstructure study of flow-solidified soil of dredged clays by mercury intrusion porosimetry[J]. Rock and Soil Mechanics, 2011, 32(12): 3591-3596, 3603. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YTLX201112009.htm

    [19] 张春雷, 汪顺才, 朱伟, 等. 初始含水率对水泥固化淤泥效果的影响[J]. 岩土力学, 2008, 29(增刊1): 567-570. https://www.cnki.com.cn/Article/CJFDTOTAL-YTLX2008S1114.htm

    ZHANG Chunlei, WANG Shuncai, ZHU Wei, et al. Influence of initial water content on cement solidification effect of dredged material[J]. Rock and Soil Mechanics, 2008, 29(S1): 567-570. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YTLX2008S1114.htm

    [20]

    YI Y, GU L, LIU S. Microstructural and mechanical properties of marine soft clay stabilized by lime-activated ground granulated blastfurnace slag[J]. Applied Clay Science, 2015, 103: 71-76.

    [21]

    YI Y, LISKA M, AI-TABBAA A. Properties of two model soils stabilized with different blends and contents of GGBS, MgO, Lime, and PC[J]. Journal of Materials in Civil Engineering, 2014, 26(2): 267-274.

    [22] 鲍树峰, 娄炎, 董志良, 等. 新近吹填淤泥地基真空固结失效原因分析及对策[J]. 岩土工程学报, 2014, 36(7): 1350-1359. doi: 10.11779/CJGE201407020

    BAO Shufeng, LOU Yan, DONG Zhiliang, et al. Causes and countermeasures for vacuum consolidation failure of newly-dredged mud foundation[J]. Chinese Journal of Geotechnical Engineering, 2014, 36(7): 1350-1359. (in Chinese) doi: 10.11779/CJGE201407020

    [23] 土工试验方法标准: GB/T 50123—2019[S]. 北京: 中国计划出版社, 2019.

    Standard for Soil Test Method: GB/T 50123—2019[S]. Beijing: China Planning Press, 2019. (in Chinese)

    [24]

    YI Y, LI C, LIU S. Alkali-activated ground-granulated blast furnace slag for stabilization of marine soft clay[J]. Journal of Materials in Civil Engineering, 2015, 27(4): 04014146.

    [25]

    KANG G, TSUCHIDA T, ATHAPATHTHU A M R G. Strength mobilization of cement-treated dredged clay during the early stages of curing[J]. Soils and Foundations, 2015, 55(2): 375-392.

    [26] 城镇污水处理厂污染物排放标准: GB 18918—2002[S]. 北京: 中国环境出版社, 2002.

    Discharge Standard of Pollutants for Municipal Wastewater Treatment Plant: GB 18918—2002[S]. Beijing: China Environmental Press, 2002. (in Chinese)

    [27]

    OTI J, KINUTHIA J. Stabilised unfired clay bricks for environmental and sustainable use[J]. Applied Clay Science, 2012, 58: 52-59.

    [28]

    ZHU W, ZHANG C L, CHIU A C. Soil–water transfer mechanism for solidified dredged materials[J]. Journal of Geotechnical and Geoenvironmental Engineering, 2007, 133(5): 588-598.

    [29]

    OUHADI V, YONG R, AMIRI M, et al. Pozzolanic consolidation of stabilized soft clays[J]. Applied Clay Science, 2014, 95: 111-118.

    [30]

    QUANG N D, CHAI J. Permeability of lime- and cement- treated clayey soil[J]. Canadian Geotechnical Journal, 2015, 52: 1221-1227.

图(12)  /  表(2)
计量
  • 文章访问数:  418
  • HTML全文浏览量:  37
  • PDF下载量:  141
  • 被引次数: 0
出版历程
  • 收稿日期:  2022-05-10
  • 网络出版日期:  2023-03-07
  • 刊出日期:  2023-08-31

目录

    /

    返回文章
    返回