Experimental investigation on prefabricated horizontal drain-based vacuum dewatering-solidification combined method for treatment of dredged slurry
-
摘要: 疏浚淤泥的含水率高、渗透性低、压缩性高、承载力低,难以快速高效地处理和处置。对此,介绍了一种复合方法,即基于水平排水板的真空脱水-固化联合方法,简称PHDVDS,并通过模型试验研究了PHDVDS方法处理高含水率疏浚淤泥的脱水减量效果和加固效果。模型试验分别采用石灰激发高炉矿渣微粉和水泥为固化剂,并与单一真空脱水方法(无固化剂)和直接固化方法(无真空脱水,以水泥为固化剂)的处理效果进行了对比。在模型试验真空脱水阶段,监测了真空脱水量和淤泥体积变化,即减量效果;在真空脱水结束后,取固化土样进行养护并测试了不同养护龄期土样的无侧限抗压强度,并结合固化土微观结构(XRD、SEM和MIP试验)分析了PHDVDS方法的作用机理。结果表明,与单一真空脱水法和直接固化法相比,PHDVDS方法的脱水减量效果和加固效果均更加优越。仅2 d真空脱水后,PHDVDS比单一真空脱水法的减量效果提高了7%~43%;其固化土样60 d无侧限抗压强度比直接固化法增大了6~54倍。Abstract: The dredged slurry exhibits the characteristics of high water content, low permeability, high compressibility and low or negligible bearing capacity, and is difficult to be rapidly treated and disposed of. Aiming at this problem, a composite method, i.e., the combined method of prefabricated horizontal drain-based vacuum dewatering and solidification, abbreviated as PHDVDS, is introduced, and a series of model tests are carried out to investigate the volume reduction and reinforcement effects of the PHDVDS method, with lime-activated ground blast furnace slag (GGBS) and cement as the binder, respectively. The performance of PHDVDS method is compared with that of the pure vacuum dewatering method (no binder) and the pure solidification method (no vacuum dewatering, using cement as the binder). During the vacuum dewatering stage of the model tests, the mass of discharged water and the settlement, i.e., volume reduction, are monitored, after which the unconfined compressive strength (UCS) of soil samples at different curing ages is tested, and the development of UCS is analyzed from microstructural point of view by the X-ray diffraction (XRD), scanning electron microscopy (SEM) and mercury intrusion porosimetry (MIP). The results indicate that, compared with the pure vacuum dewatering method and pure solidification method, the PHDVDS method demonstrates significantly better volume reduction efficacy and significantly better reinforcement efficacy. For instance, the volume reduction by the PHDVDS method after two-day vacuum dewatering is 7%~43%, higher than that by the pure vacuum dewatering method. The 60-day UCS of the PHDVDS-treated soil is 6 times~54 times higher than that of the pure solidification method.
-
-
表 1 模型试验方案
Table 1 Program of model tests
组别 固化剂
类型固化剂掺量/% 石灰/高炉矿渣微粉/% 真空
荷载/kPaVSLG1 石灰-高炉矿渣微粉 10 5 -80 VSLG2 石灰-高炉矿渣微粉 10 10 -80 VSLG3 石灰-高炉矿渣微粉 10 20 -80 VSLG4 石灰-高炉矿渣微粉 10 40 -80 VSC 水泥 10 — -80 SC 水泥 10 — — VD — — — -80 表 2 土体渗透系数随时间的变化
Table 2 Variation of soil permeability with time
工况 渗透系数 k/(10-8 m·s-1) 0.5 d 1.5 d 2.5 d 3.5 d 4.5 d Aw = 0% 1.10 1.10 1.10 1.10 1.10 Aw = 10% 2.96 1.47 0.82 0.79 0.77 -
[1] 朱伟, 闵凡路, 吕一彦, 等. "泥科学与应用技术"的提出及研究进展[J]. 岩土力学, 2013, 34(11): 3041-3054. https://www.cnki.com.cn/Article/CJFDTOTAL-YTLX201311001.htm ZHU Wei, MIN Fanlu, LÜ Yiyan, et al. Subject of"mud science and application technology"and its research progress[J]. Rock and Soil Mechanics, 2013, 34(11): 3041-3054. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YTLX201311001.htm
[2] 王军, 王逸杰, 刘飞禹, 等. 间歇式真空预压联合电渗加固吹填软土试验[J]. 中国公路学报, 2016, 29(10): 37-45. https://www.cnki.com.cn/Article/CJFDTOTAL-ZGGL201610005.htm WANG Jun, WANG Yijie, LIU Feiyu, et al. Test of reinforcement by intermittent vacuum preloading- electroosmosis in dredger soft clay[J]. China Journal of Highway and Transport, 2016, 29(10): 37-45. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-ZGGL201610005.htm
[3] ZHANG R, DONG C, LU Z, et al. Strength characteristics of hydraulically dredged mud slurry treated by flocculation- solidification combined method[J]. Construction and Building Materials, 2019, 228: 116742. doi: 10.1016/j.conbuildmat.2019.116742
[4] ZHOU Y, CAI G, CHEESEMAN C, et al. Sewage sludge ash-incorporated stabilization/solidification for recycling and remediation of marine sediments[J]. Journal of Environmental Management, 2022, 301, 113877. doi: 10.1016/j.jenvman.2021.113877
[5] WANG Q, KONG L, TSENG M L, et al. Solid waste material reuse analysis: filling the road subgrade with riverway silt and sediment[J]. Environmental Science and Pollution Research, 2022, 29(23): 35096-35109. doi: 10.1007/s11356-022-18650-z
[6] 朱伟, 张春雷, 刘汉龙, 等. 疏浚泥处理再生资源技术的现状[J]. 环境科学与技术, 2002, 25(4): 39-41, 50. https://www.cnki.com.cn/Article/CJFDTOTAL-FJKS200204016.htm ZHU Wei, ZHANG Chunlei, LIU Hanlong, et al. The status quo of dredged spoils utilization[J]. Environmental Science and Technology, 2002, 25(4): 39-41, 50. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-FJKS200204016.htm
[7] WANG J, HUANG G, FU H, et al. Vacuum preloading combined with multiple-flocculant treatment for dredged fill improvement[J]. Engineering Geology, 2019, 259, 105194. doi: 10.1016/j.enggeo.2019.105194
[8] ZHU W, YAN J, YU G. Vacuum preloading method for land reclamation using hydraulic filled slurry from the sea: a case study in coastal China[J]. Ocean Engineering, 2018, 152: 286-299. doi: 10.1016/j.oceaneng.2018.01.063
[9] CHU J, YAN S, LAM K P. Methods for improvement of clay slurry or sewage sludge[J]. Proceedings of the Institution of Civil Engineers-Ground Improvement, 2012, 165(4): 187-199. doi: 10.1680/grim.11.00015
[10] CAI Y, QIAO H, WANG J, et al. Experimental tests on effect of deformed prefabricated vertical drains in dredged soil on consolidation via vacuum preloading[J]. Engineering Geology, 2017, 222: 10-19. doi: 10.1016/j.enggeo.2017.03.020
[11] 姜彦彬, 何宁, 许滨华, 等. 真空预压负压分布规律模型试验研究[J]. 岩土工程学报, 2017, 39(10): 1874-1883. doi: 10.11779/CJGE201710016 JIANG Yanbin, HE Ning, XU Binghua, et al. Model tests on negative pressure distribution in vacuum preloading[J]. Chinese Journal of Geotechnical Engineering, 2017, 39(10): 1874-1883. (in Chinese) doi: 10.11779/CJGE201710016
[12] QIU Q, MO H, DONG Z. Vacuum pressure distribution and pore pressure variation in ground improved by vacuum preloading[J]. Canadian Geotechnical Journal, 2007, 44(12): 1433-1445. doi: 10.1139/T07-064
[13] CHIBA T, SHINSHA HH, TANI Y. Development of a Vacuum Consolidation Method Employing Horizontal Drains[R]. Tokyo: Japan Dredging and Reclamation Engineering Association Tokyo, 1992.
[14] NAGAHARA H, FUJIYAMA T, ISHIGURO T, et al. FEM analysis of high airport embankment with horizontal drains[J]. Geotextiles and Geomembranes, 2004, 22(1): 49-62.
[15] 罗玉龙, 彭华, 何金平. 水平塑料排水带固结流态吹填土可行性研究[J]. 武汉理工大学学报, 2008, 30(6): 74-78. https://www.cnki.com.cn/Article/CJFDTOTAL-WHGY200806021.htm LUO Yulong, PENG Hua, HE Jinping. Research on the feasibility of consolidating flowed dredger fill by horizontal plastic drainage strip method[J]. Journal of Wuhan University of Technology, 2008, 30(6): 74-78. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-WHGY200806021.htm
[16] 韦剑锋. 天津市滨海新区吹填土工程处理现状及技术改进试验研究: 吹填土水平辐射真空排水固结技术初探[J]. 工程勘察, 2008, 36(6): 20-22, 75. https://www.cnki.com.cn/Article/CJFDTOTAL-GCKC200806009.htm WEI Jianfeng. Experimental study on the dredger fill treat state and its technolgy improvement[J]. Geotechnical Investigation & Surveying, 2008, 36(6): 20-22, 75. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-GCKC200806009.htm
[17] TANG Y X, MIYAZAKI Y, TSUCHIDA T. Practices of reused dredgings by cement treatment[J]. Soils and Foundations, 2001, 41(5): 129-143.
[18] 丁建文, 洪振舜, 刘松玉. 疏浚淤泥流动固化土的压汞试验研究[J]. 岩土力学, 2011, 32(12): 3591-3596, 3603. https://www.cnki.com.cn/Article/CJFDTOTAL-YTLX201112009.htm DING Jianwen, HONG Zhenshun, LIU Songyu. Microstructure study of flow-solidified soil of dredged clays by mercury intrusion porosimetry[J]. Rock and Soil Mechanics, 2011, 32(12): 3591-3596, 3603. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YTLX201112009.htm
[19] 张春雷, 汪顺才, 朱伟, 等. 初始含水率对水泥固化淤泥效果的影响[J]. 岩土力学, 2008, 29(增刊1): 567-570. https://www.cnki.com.cn/Article/CJFDTOTAL-YTLX2008S1114.htm ZHANG Chunlei, WANG Shuncai, ZHU Wei, et al. Influence of initial water content on cement solidification effect of dredged material[J]. Rock and Soil Mechanics, 2008, 29(S1): 567-570. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YTLX2008S1114.htm
[20] YI Y, GU L, LIU S. Microstructural and mechanical properties of marine soft clay stabilized by lime-activated ground granulated blastfurnace slag[J]. Applied Clay Science, 2015, 103: 71-76.
[21] YI Y, LISKA M, AI-TABBAA A. Properties of two model soils stabilized with different blends and contents of GGBS, MgO, Lime, and PC[J]. Journal of Materials in Civil Engineering, 2014, 26(2): 267-274.
[22] 鲍树峰, 娄炎, 董志良, 等. 新近吹填淤泥地基真空固结失效原因分析及对策[J]. 岩土工程学报, 2014, 36(7): 1350-1359. doi: 10.11779/CJGE201407020 BAO Shufeng, LOU Yan, DONG Zhiliang, et al. Causes and countermeasures for vacuum consolidation failure of newly-dredged mud foundation[J]. Chinese Journal of Geotechnical Engineering, 2014, 36(7): 1350-1359. (in Chinese) doi: 10.11779/CJGE201407020
[23] 土工试验方法标准: GB/T 50123—2019[S]. 北京: 中国计划出版社, 2019. Standard for Soil Test Method: GB/T 50123—2019[S]. Beijing: China Planning Press, 2019. (in Chinese)
[24] YI Y, LI C, LIU S. Alkali-activated ground-granulated blast furnace slag for stabilization of marine soft clay[J]. Journal of Materials in Civil Engineering, 2015, 27(4): 04014146.
[25] KANG G, TSUCHIDA T, ATHAPATHTHU A M R G. Strength mobilization of cement-treated dredged clay during the early stages of curing[J]. Soils and Foundations, 2015, 55(2): 375-392.
[26] 城镇污水处理厂污染物排放标准: GB 18918—2002[S]. 北京: 中国环境出版社, 2002. Discharge Standard of Pollutants for Municipal Wastewater Treatment Plant: GB 18918—2002[S]. Beijing: China Environmental Press, 2002. (in Chinese)
[27] OTI J, KINUTHIA J. Stabilised unfired clay bricks for environmental and sustainable use[J]. Applied Clay Science, 2012, 58: 52-59.
[28] ZHU W, ZHANG C L, CHIU A C. Soil–water transfer mechanism for solidified dredged materials[J]. Journal of Geotechnical and Geoenvironmental Engineering, 2007, 133(5): 588-598.
[29] OUHADI V, YONG R, AMIRI M, et al. Pozzolanic consolidation of stabilized soft clays[J]. Applied Clay Science, 2014, 95: 111-118.
[30] QUANG N D, CHAI J. Permeability of lime- and cement- treated clayey soil[J]. Canadian Geotechnical Journal, 2015, 52: 1221-1227.
-
其他相关附件