• 全国中文核心期刊
  • 中国科技核心期刊
  • 美国工程索引(EI)收录期刊
  • Scopus数据库收录期刊

砾石土心墙料的大三轴湿化变形试验与规律分析

左永振, 程展林, 潘家军, 周跃峰, 赵娜

左永振, 程展林, 潘家军, 周跃峰, 赵娜. 砾石土心墙料的大三轴湿化变形试验与规律分析[J]. 岩土工程学报, 2020, 42(S2): 37-42. DOI: 10.11779/CJGE2020S2007
引用本文: 左永振, 程展林, 潘家军, 周跃峰, 赵娜. 砾石土心墙料的大三轴湿化变形试验与规律分析[J]. 岩土工程学报, 2020, 42(S2): 37-42. DOI: 10.11779/CJGE2020S2007
ZUO Yong-zhen, CHENG Zhan-lin, PAN Jia-jun, ZHOU Yue-feng, ZHAO Na. Large-scale triaxial wetting deformation tests and laws of gravelly soil core materials[J]. Chinese Journal of Geotechnical Engineering, 2020, 42(S2): 37-42. DOI: 10.11779/CJGE2020S2007
Citation: ZUO Yong-zhen, CHENG Zhan-lin, PAN Jia-jun, ZHOU Yue-feng, ZHAO Na. Large-scale triaxial wetting deformation tests and laws of gravelly soil core materials[J]. Chinese Journal of Geotechnical Engineering, 2020, 42(S2): 37-42. DOI: 10.11779/CJGE2020S2007

砾石土心墙料的大三轴湿化变形试验与规律分析  English Version

基金项目: 

国家重点研发计划项目 2017YFC0404804

国家自然科学基金-雅砻江联合基金重点项目 U1765203

水利部土石坝破坏机理与防控技术重点实验室开放基金项目 YK319013

详细信息
    作者简介:

    左永振(1980— ),男,高级工程师,硕士,主要从事粗粒土的力学特性试验研究和岩土力学CT可视化技术研究。E-mail:zuoyongzh@163.com

  • 中图分类号: TU411

Large-scale triaxial wetting deformation tests and laws of gravelly soil core materials

  • 摘要: 蓄水湿化变形一直是制约高土石坝长期安全运行的技术难题,为此开展了筑坝堆石料的湿化变形试验,却极少针对砾石土心墙料进行湿化变形试验,这主要是受限于目前的砾石土料试验技术手段而难以开展试验研究。采用在大尺寸砾石土料试样中设置砂芯增加进水通道、缩短湿化路径的方法,可以解决砾石土心墙料的湿化变形试验所需时间较长、样品不能充分饱和等技术难点,实现砾石土心墙料的大三轴湿化变形试验。开展的砾石土心墙料的单线法湿化变形试验成果表明,砾石土心墙料存在明显的湿化变形现象,轴向湿化变形、体积湿化变形与围压、应力水平等密切相关,湿化变形与应力水平关系,在围压较小时随应力水平的增加而增加,在围压较大时随应力水平的增加而减小,关系曲线呈现明显的分叉现象,湿化变形与围压关系基本呈现先增加后减小的规律,与堆石料的湿化变形规律相比较,砾石土心墙料的湿化变形规律更加复杂。
    Abstract: Wetting deformation of water storage has always been a technical issue that restricts the long-term safety operation of high earth-rockfill dams. The wetting deformation tests have been commonly carried out for rockfill materials, but seldom for gravelly soil core wall materials, which is mainly because it is difficult to carry out experimental studies due to the current testing techniques of gravel soil materials. By setting sand cores in large-scale gravelly soil samples to increase the water inlet channel and shorten the wetting path, the technical difficulties such as the long time required for the wetting deformation tests on gravelly soil core materials and the insufficient saturation of samples can be solved. Then the large-scale triaxial wetting deformation tests on gravelly soil core materials can be conducted successfully. The wetting test results show that there is obvious wetting deformation phenomenon in gravelly soil core wall materials. The axial and volume wetting deformations are closely related to the confining pressure and stress level. The relationship between the wetting deformation and the stress level increases with the increasing stress level when the confining pressure is small, and decreases with the increasing stress level when the confining pressure is large. The relationship between the wetting deformation and the confining pressure basically shows the deformation tendency of increasing first and then decreasing. Compared with that of rockfill materials, the wetting deformation tendency of gravelly soil core materials is more complex.
  • 图  1   砾石土心墙料试验级配

    Figure  1.   Grain-size distribution curve of gravelly soil core materials

    图  2   砂芯样孔压消散曲线对比[6]

    Figure  2.   Comparison of pore pressure dissipation curves in samples with sand cores[6]

    图  3   砾石土心墙料湿化变形试验的实现流程图

    Figure  3.   Flow chart of wetting deformation tests on gravelly soil core materials

    图  4   砾石土料湿化变形与应力水平、围压关系曲线

    Figure  4.   Relation curves of wetting deformation with stress level and confining pressure of gravelly soil core materials

    图  5   不同含水率条件下的砾石土料湿化变形对比

    Figure  5.   Comparison of wetting deformation under different water content conditions

    图  6   砾石土料湿化变形试验时程曲线(σ3=0.4 MPa,SL=0.6)

    Figure  6.   Time-history curves of wetting deformation tests on gravelly soil core materials(σ3=0.4 MPa, SL=0.6)

    图  7   砾石土料湿化变形试验时程曲线(σ3=1.6 MPa,SL=0.8)

    Figure  7.   Time-history curves of wetting deformation tests on gravelly soil core materials(σ3=1.6 MPa, SL=0.8)

    表  1   砾石土心墙料湿化变形量

    Table  1   Wetting deformations of gravelly soil core materials

    应力 水平不同围压的轴向应变/%不同围压的体积应变/%
    0.20.40.81.21.60.20.40.81.21.6
    0.20.1710.4080.8120.5910.5680.5370.9871.4180.9350.906
    0.40.7461.0950.9380.2910.5801.2091.8841.2030.6900.673
    0.62.3522.2892.0830.3190.0271.6581.6991.9080.2280.097
    0.85.4734.4222.8430.4320.0391.1082.1091.2700.2250.037
    下载: 导出CSV
  • [1] 李国英, 王禄仕, 米占宽. 土质心墙堆石坝应力和变形研究[J]. 岩石力学与工程学报, 2004(8): 1363-1369.

    LI Guo-ying, WANG Lu-shi, MI Zhan-kuan, Research on stress-strain behaviour of soil core rockfill dam[J]. Chinese Journal of rock Mechanics and Engineering, 2004(8): 1363-1369. (in Chinese)

    [2] 雷红军, 冯业林, 刘兴宁. 糯扎渡水电站蓄水速度对心墙堆石坝安全的影响研究[J]. 大坝与安全, 2012(5): 1-5. doi: 10.3969/j.issn.1671-1092.2012.05.002

    LEI Hong-jun, FENG Ye-lin, LIU Xing-ning. Effect of impounding speed on safety of Nuozadu core wall rockfill dam[J]. Dam and safety, 2012(5): 1-5. (in Chinese) doi: 10.3969/j.issn.1671-1092.2012.05.002

    [3] 陆阳洋, 高庄平, 朱俊高. 湿化变形对斜心墙堆石坝受力变形特性的影响[J]. 扬州大学学报(自然科学版), 2014, 17(3): 64-68, 73.

    LU Yang-yang, GUO Zhuang-ping, ZHU Jun-gao. Effect of wetting deformation on behavior of eatth rockfill dam[J]. Journal of Yangzhou University (Natural Science Edition), 2014, 17(3): 64-68, 73. (in Chinese)

    [4] 徐泽平. 当代高堆石坝建设的关键技术及岩土工程问题[J]. 岩土工程学报, 2011, 33(增刊1): 34-40.

    XU Ze-ping. Technologies and geotechnical problems for construction of modern rockfill dams[J]. Chinese Journal of Geotechnical Engineering, 2011, 33(S1): 34-40. (in Chinese)

    [5] HUANG Ling, XU Han, RAO Xi-bao, etc, Triaxial tests effect study on drilling and pumped sands of gravelly soil[J]. 长江科学院院报, 2009, 26(12): 84-88. (in Chinese) doi: 10.3969/j.issn.1001-5485.2009.12.021
    [6] 程展林, 左永振, 丁红顺. 砾石土大型三轴试验砂芯加速排水方法及试样成孔制样器.中国专利:ZL2009100630575[P]. 2011-06-15.
    [7] 土工试验方法标准:GB/T50123—2019[S]. 2019.

    Standard for Geotechnical Testing Method: GB/T50123—2019[S]. 2019. (in Chinese)

    [8] 程展林, 左永振, 丁红顺, 等. 堆石料湿化特性试验研究[J]. 岩土工程学报, 2010, 32(2): 243-247.

    CHENG Zhan-lin, ZUO Yong-zhen, DING Hong-shun, et al. Wetting characteristics of coarse-grained materials[J]. Chinese Journal of Geotechnical Engineering, 2010, 32(2): 243-247. (in Chinese)

  • 期刊类型引用(1)

    1. 于思冬,朱熊彪. 基于非接触式加载的海上风机桩土相互作用模型试验. 吉林水利. 2025(02): 12-17 . 百度学术

    其他类型引用(0)

图(7)  /  表(1)
计量
  • 文章访问数:  179
  • HTML全文浏览量:  31
  • PDF下载量:  60
  • 被引次数: 1
出版历程
  • 收稿日期:  2020-05-29
  • 网络出版日期:  2022-12-07
  • 刊出日期:  2020-10-31

目录

    /

    返回文章
    返回