Seismic safety analysis of high earth-rockfill dams based on seismic deformational fragility
-
摘要: 基于性能的地震易损性分析可有效估计地震作用下结构损害,是抗震安全评估的重要方法之一。以坝顶沉降最大值和坝顶横向水平位移最大值为性能参数,通过考虑坝址区域地震情况确定输入地震动数量,并提出采用性能参数突变点确定性能水平。首先,根据糯扎渡高土石坝坝址区域地震情况合理确定输入地震动数量,并采用改进PZC弹塑性模型和动力固结有限元程序SWANDYNE II进行高土石坝动力分析。以坝顶沉降最大值和坝顶横向水平位移最大值作为性能参数,通过对60条地震动的动力分析,确定性能水平。然后采用弹塑性模型-非线性方法进行动力分析,结合MSA方法得到各性能参数地震易损性曲线。通过分析性能参数平均值和标准差的变异系数与地震动数量的关系,确定地震动数量超过30条时,性能参数的平均值和标准差的变异系数基本不发生波动。最后,以地震易损性和地震危险性曲线确定糯扎渡高土石坝的抗震安全性,成果可为高土石坝抗震性能研究提供依据。
-
关键词:
- 性能参数 /
- 地震易损性 /
- MSA法 /
- SWANDYNE II程序
Abstract: The performance-based seismic fragility analysis can effectively estimate structural damage under earthquake action and become one of the important methods for seismic safety assessment. The maximum settlement and the horizontal maximum displacement of the dam crest are taken as the performance parameters. It is proposed to consider the seismic situation of the dam site to determine the number of input ground motions. The performance levels are determined based on the catastrophe point of the performance parameters. Firstly, the ground motion of Nuozhadu earth-rockfill dam site is reasonably determined to be suitable for the ground motion of the high earth-rockfill dam, and the dynamic analysis is carried out by using the improved PZC elastoplastic constitutive model and the dynamic consolidation finite element program SWANDYNE II. By regarding the maximum settlement and the horizontal maximum displacement of the crest as the performance parameters, the performance level of the high earth-rockfill dam is determined through the dynamic analysis of 60 selected ground motions. The elastoplastic model-nonlinear method is used for dynamic analysis, and the MSA method is used to obtain the seismic fragility curve of the performance parameters. By analyzing the relationship between the variation coefficients of the average and standard deviations of performance parameters and the number of ground motions, it is determined that the variation coefficients of the average and standard deviations of performance parameters almost do not fluctuate when the number of ground motions exceeds 30. Finally, the seismic safety of Nuozhadu high earth-rockfill dam is determined by the results of seismic fragility and the seismic risk curve. The results may provide a basis for the researches on the seismic performance of high earth-rockfill dams.-
Keywords:
- performance parameter /
- seismic fragility /
- MSA method /
- program SWANDYNE II
-
-
表 1 历史破坏性地震统计表
Table 1 Statistics of historical destructive earthquakes
(次) 震级分档 4.7≤M<5 5≤M<6 6≤M<7 7≤M<8 地震数量 36 61 22 6 表 2 地震动选择数量
Table 2 Selected number of ground motion
(次) 震级分档 4.7≤M<5 5≤M<6 6≤M<7 7≤M<8 地震数量 18 28 11 3 表 3 改进PZC模型参数
Table 3 Parameters of improved PZC model
堆石料 Ko Go αf αg Mfc Mgc H0 Hu0 γ γu mg mb γden βH eΓ λc ζ 820 510 0.45 0.45 1.25 1.7 1400 1500 10 5 2 5 220 15 0.36 0.015 0.63 心墙料 Ko Go α Mc H0 μ γ m mb γden βH eΓ λc 150 124 0.45 1.2 300 2 0 0 1 0 15 0.355 0.003 表 4 坝址场地的地震动危险性参数
Table 4 Hazard parameters of ground motion of site
概 率 50 a超越概率 100 a超越概率 10% 5% 2% 1% 年超越概率 2.1×10-3 1.03×10-3 2.02×10-4 1.005×10-4 回归期/a 475 975 4950 9950 峰值加速度/g 0.113 0.15 0.283 0.345 表 5 100 a内坝顶沉降最大值安全概率
Table 5 Maximum safety probabilities of maximum settlement of dam crest in 100 years
最大沉降/m 0.4 1.0 2.7 概率/% 80.54 17.98 1.48 表 6 100 a内坝顶横向水平位移最大值安全概率
Table 6 Maximum safety probabilities of horizontal maximum displacement of dam crest in 100 years
水平位移最大值/m 0.1 0.3 1.0 概率/% 74.93 23.49 1.58 -
[1] 赵剑明, 刘小生, 温彦锋, 等. 紫坪铺大坝汶川地震震害分析及高土石坝抗震减灾研究设想[J]. 水力发电, 2009, 35(5): 11-14. https://www.cnki.com.cn/Article/CJFDTOTAL-SLFD200905004.htm ZHAO Jian-ming, LIU Xiao-sheng, WEN Yan-feng, et al. Analysis of earthquake damage of the Zipingpu Dam in Wenchuan Earthquake and the study proposal on the anti-earthquake and disaster reduction of high earth-rock dam[J]. Water Power, 2009, 35(5): 11-14. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-SLFD200905004.htm
[2] FRAGIADAKIS M, PAPADRAKAKIS M. Performance based optimum seismic design of reinforced concrete structures[J]. Earthquake Engineering & Structural Dynamics, 2008, 37(6): 825-844.
[3] 李建中, 管仲国. 基于性能桥梁抗震设计理论发展[J]. 工程力学, 2011, 28(增刊2): 24-30. https://www.cnki.com.cn/Article/CJFDTOTAL-GCLX2011S2007.htm LI Jian-zhong, GUAN Zhong-guo. Performance-based seismic design for bridges[J]. Engineering mechanics, 2011, 28(S2): 24-30. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-GCLX2011S2007.htm
[4] ÖZUYGUR A R. Performance-based seismic design of an irregular tall building: a case study[J]. Structures, 2016, 5: 112-122. doi: 10.1016/j.istruc.2015.10.001
[5] MACKIE K R, STOJADINOVIĆ B. Performance-based seismic bridge design for damage and loss limit states[J]. Earthquake Engineering & Structural Dynamics, 2010, 36(13): 1953-1971.
[6] 徐强, 徐舒桐, 陈健云, 等. 重力坝抗震性能的POA-ETA评价方法[J]. 水利学报, 2018, 49(8): 986-994. https://www.cnki.com.cn/Article/CJFDTOTAL-SLXB201808010.htm XU Qiang, XU Shu-tong, CHEN Jian-yun, et al. POA-ETA method for seismic performance evaluation of concrete gravity dam[J]. Journal of Hydraulic Engineering, 2018, 49(8): 986-994. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-SLXB201808010.htm
[7] 孔宪京, 庞锐, 邹德高, 等. 基于IDA的高面板堆石坝抗震性能评价[J]. 岩土工程学报, 2018, 40(6): 978-984. https://www.cnki.com.cn/Article/CJFDTOTAL-YTGC201806003.htm KONG Xian-jing, PANG Rui, ZOU De-gao, et al. Seismic performance evaluation of high CFRDs based on incremental dynamic analysis[J]. Chinese Journal of Geotechnical Engineering, 2018, 40(6): 978-984. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YTGC201806003.htm
[8] 姚霄雯. 基于性能的高拱坝地震易损性分析与抗震安全评估[D]. 杭州: 浙江大学, 2013. YAO Xiao-wen. Performance- Based Seismic Fragility Analysis and Safety Assessment of High Arch Dams[D]. Hangzhou: Zhejiang University, 2013. (in Chinese)
[9] 沈怀至, 金峰, 张楚汉. 基于性能的重力坝-地基系统地震易损性分析[J]. 工程力学, 2008, 25(12): 86-91. https://www.cnki.com.cn/Article/CJFDTOTAL-GCLX200812018.htm SHEN Huai-zhi, JIN Feng, ZHANG Chu-han. Performance-based seismic fragility analysis of concrete gravity-foundation system[J]. Engineering Mechanics, 2008, 25(12): 86-91. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-GCLX200812018.htm
[10] 庞锐, 孔宪京, 邹德高, 等. 基于MSA法的高心墙堆石坝地震沉降易损性分析[J]. 水利学报, 2017, 48(7): 866-873. https://www.cnki.com.cn/Article/CJFDTOTAL-SLXB201707014.htm PANG Rui, KONG Xian-jing, ZOU De-gao, et al. Seismic subsidence fragility analysis of high CRFDs based on MSA[J]. Journal of Hydraulic Engineering, 2017, 48(7): 866-873. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-SLXB201707014.htm
[11] 王笃波, 刘汉龙, 于陶, 等. 基于变形的土石坝地震易损性分析[J]. 岩土工程学报, 2013, 35(5): 814-819. https://www.cnki.com.cn/Article/CJFDTOTAL-YTGC201305002.htm WANG Du-bo, LIU Han-long, YU Tao, et al. Seismic fragility analysis for earth-rockfill dams based on deformation[J]. Chinese Journal of Geotechnical Engineering, 2013, 35(5): 814-819. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YTGC201305002.htm
[12] SWAISGOOD J R. Embankment dam deformations caused by earthquakes[C]//Pacific Conference on Earthquake Engineering. Christchurch, 2003.
[13] 朱晟. 土石坝震害与抗震安全[J]. 水力发电学报, 2011, 30(6): 40-51. https://www.cnki.com.cn/Article/CJFDTOTAL-SFXB201106010.htm ZHU Sheng. Earthquake induced damage and aseismic safety of earth-rock dam[J]. Journal of Hydroelectric Engineering, 2011, 30(6): 40-51. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-SFXB201106010.htm
[14] 刘君, 刘博, 孔宪京. 地震作用下土石坝坝顶沉降估算[J]. 水力发电学报, 2012, 31(2): 183-191. https://www.cnki.com.cn/Article/CJFDTOTAL-SFXB201202028.htm LIU Jun, LIU Bo, KONG Xian-jing. Estimation of earthquake-induced crest settlements of earth and rockfill dams[J]. Journal of Hydroelectric Engineering, 2012, 31(2): 183-191. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-SFXB201202028.htm
[15] 陈生水, 李国英, 傅中志. 高土石坝地震安全控制标准与极限抗震能力研究[J]. 岩土工程学报, 2013, 35(1): 59-65. https://www.cnki.com.cn/Article/CJFDTOTAL-YTGC201301002.htm CHEN Sheng-shui, LI Guo-ying, FU Zhong-zhi. Safety criteria and limit resistance capacity of high earth-rock dams subjected to earthquakes[J]. Chinese Journal of Geotechnical Engineering, 2013, 35(1): 59-65. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YTGC201301002.htm
[16] 楚金旺, 朱晟, 黄亚梅. 基于实际震害的土石坝永久变形估算[J]. 中国水利水电科学研究院学报, 2017, 15(6): 409-417. https://www.cnki.com.cn/Article/CJFDTOTAL-ZGSX201706001.htm CHU Jin-wang, ZHU Sheng, HUANG Ya-mei. Estimation of earthquake-induced permanent deformation for earth dam based on seismic damage[J]. Journal of China Institute of Water Resources and Hydropower Research, 2017, 15(6): 409-417. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-ZGSX201706001.htm
[17] SINGH R, ROY D, DAS D. A correlation for permanent earthquake-induced deformation of earth embankments[J]. Engineering Geology, 2007, 90(3/4): 174-185.
[18] 赵剑明, 刘小生, 陈宁, 等. 高心墙堆石坝的极限抗震能力研究[J]. 水力发电学报, 2009, 28(5): 97-102. https://www.cnki.com.cn/Article/CJFDTOTAL-SFXB200905019.htm ZHAO Jian-ming, LIU Xiao-sheng, CHEN Ning, et al. Research on the maximum anti-seismic capability of high earth core rock-fill dam[J]. Journal of Hydroelectric Engineering, 2009, 28(5): 97-102. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-SFXB200905019.htm
[19] 工程场地地震安全性评价:GB17741—2005[S]. 2005. Evaluation of Seismic Safety for Engineering Sites: GB17741—2005[S]. 2005. (in Chinese)
[20] PADGETT J E, NIELSON B G, DESROCHES R. Selection of optimal intensity measures in probabilistic seismic demand models of highway bridge portfolios[J]. Earthquake Engineering and Structural Dynamics, 2008, 37(5): 711-726.
[21] SHOME N. Probabilistic Seismic Demand Analysis of Nonlinear Structures[D]. Palo Alto: Stanford University, 1999.
[22] 吴永康, 王翔南, 董威信, 等. 考虑流固耦合作用的高土石坝动力分析[J]. 岩土工程学报, 2015, 37(11): 2007-2013. https://www.cnki.com.cn/Article/CJFDTOTAL-YTGC201511013.htm WU Yong-kang, WANG Xiang-nan, DONG Wei-xin, et al. Dynamic analyses of a high earth-rockfill dam considering effects of solid-fluid coupling[J]. Chinese Journal of Geotechnical Engineering, 2015, 37(11): 2007-2013. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YTGC201511013.htm
[23] 董威信. 高心墙堆石坝流固耦合弹塑性地震动力响应分析[D]. 北京: 清华大学, 2015. DONG Wei-xin. Elasto Plastic Fluid-solid Coupling Analysis of Seismic Response of High Core-wall Rockfill Dam[D]. Beijing: Tsinghua University, 2015. (in Chinese)
[24] 靳聪聪, 迟世春, 聂章博. 土体PZC弹塑性本构模型参数的确定[J/OL]. 解放军理工大学学报(自然科学版): 1-6.[2020-01-10]. http://kns.cnki.net/kcms/detail/32.1430.N.20180109.1043.002.html. [25] CHAN A. User Manual for Diana Swandyne II[R]. Glasgow: Glasgow Department of Civil Engineering, Glasgow University, 1989.
[26] ZIENKIEWICZ O C, CHAN A H C, PASTOR M, et al. Computational Geomechanics with Special Reference to Earthquake Engineering[M]. New York: John Wiley & Sons, 1998.
[27] BAKER J W. Efficient analytical fragility function fitting using dynamic structural analysis[J]. Earthquake Spectra, 2015, 31(1): 579-599.
[28] BAKER J, CORNELL C. Vector-valued Ground Motion Intensity Measures for Probabilistic Seismic Demand Analysis[M]. Palo Alto: Stanford University, 2006.
[29] DANIEL S, ARMEN D K. Improved seismic fragility modeling from empirical data[J]. Structural Safety, 2008, 30(4): 320-336.
[30] CORNELL C A. Calculating building seismic performance reliability:a basis for multi-level design norms[C]//Proceedings of the 11th World Conference on Earthquake Engineering. Acapulco, 1996: 5707-5712.