• 全国中文核心期刊
  • 中国科技核心期刊
  • 美国工程索引(EI)收录期刊
  • Scopus数据库收录期刊

压气储能地下储气库围岩累积损伤特性数值研究

蒋中明, 秦双专, 唐栋

蒋中明, 秦双专, 唐栋. 压气储能地下储气库围岩累积损伤特性数值研究[J]. 岩土工程学报, 2020, 42(2): 230-238. DOI: 10.11779/CJGE202002003
引用本文: 蒋中明, 秦双专, 唐栋. 压气储能地下储气库围岩累积损伤特性数值研究[J]. 岩土工程学报, 2020, 42(2): 230-238. DOI: 10.11779/CJGE202002003
JIANG Zhong-ming, QIN Shuang-zhuan, TANG Dong. Numerical study on accumulative damage characteristics of underground rock caverns for compressed air energy storage[J]. Chinese Journal of Geotechnical Engineering, 2020, 42(2): 230-238. DOI: 10.11779/CJGE202002003
Citation: JIANG Zhong-ming, QIN Shuang-zhuan, TANG Dong. Numerical study on accumulative damage characteristics of underground rock caverns for compressed air energy storage[J]. Chinese Journal of Geotechnical Engineering, 2020, 42(2): 230-238. DOI: 10.11779/CJGE202002003

压气储能地下储气库围岩累积损伤特性数值研究  English Version

基金项目: 

国家自然科学基金项目 51778070

详细信息
    作者简介:

    蒋中明(1969— ),男,博士,教授,主要从事岩土工程等方面的教学和科研工作。E-mail:zzmmjiang@163.com

  • 中图分类号: TU43

Numerical study on accumulative damage characteristics of underground rock caverns for compressed air energy storage

  • 摘要: 压气储能电站地下岩穴储气库围岩在循环运行工况下累积损伤效应明显。为研究大规模地下储气库围岩的累积损伤特性,基于损伤理论和FLAC3D软件平台,二次开发了适用于大规模地下储气库循环加卸载条件下的累积损伤分析程序,并对程序正确性进行了验证。在此基础上,研究了储气库截面型式、洞室埋深和运行下限压力等因素对储气库围岩累积损伤特性的影响。研究表明:①储气库截面型式、洞室埋深和运行下限压力都对储气库围岩变形参数损伤影响较显著,且储气库竖直方向损伤深度都大于水平方向损伤深度;②损伤区内围岩变形参数的损伤程度和损伤变量随着洞室埋深或运行下限压力的增加而减小;③对于相同截面型式的储气库,埋深和运行下限压力不同时,储气库围岩损伤区内同一测点位置的损伤变量或变形参数差值随着循环次数的增加逐渐增大。大规模地下储气库围岩累积损伤特性对全面分析储气库的安全稳定性不可以忽略。
    Abstract: The accumulative damage effects in the surrounding rock of underground caverns for compressed air energy storage (CAES) are obvious in cyclic operation cases. In order to explore the cumulative damage characteristics of the surrounding rock of large-scale rock caverns, based on the damaged theory and FLAC3D software platform, a routine is developed for the cumulative damaged analysis of the large-scale CAES rock caverns under periodically loading and unloading conditions and validated by a given example. On this basis, the influences of cross-section type of caverns, buried depth and the minimum operating pressure on the cumulative damage characteristics of the surrounding rock are analyzed. The results show that: (1) The cross-section type of cavern, buried depth and the minimum operating pressure are the factors significantly influencing the deformation analysis parameters of the surrounding rock, and the damaged depth in vertical direction is greater than that in horizontal direction. (2) The damage degree of deformation parameters and damage variables of the surrounding rock in damage zone decrease with the increase of the buried depth or the minimum operating pressure. (3) For the cavern with the same cross-section, the difference of damage variables and deformation parameters at the same location in the damage zone of the surrounding rock increases with the numbers of cycles both in the conditions of different burial depths and minimum operation pressures. The accumulative damage characteristics of the surrounding rock of large-scale underground caverns can not be ignored for comprehensive analysis of safety and stability of underground caverns for CAES.
  • 图  1   计算流程图

    Figure  1.   Flow chart of calculation

    图  2   数值模型

    Figure  2.   Numerical model

    图  3   数值试验与物理试验成果对比

    Figure  3.   Comparison between numerically simulated results and test data

    图  4   数值计算网格图

    Figure  4.   Numerical grid for calculation

    图  5   隧道式储气库截面型式

    Figure  5.   Types of tunnel section for gas storage cavern

    5   不同截面型式围岩损伤区分布轮廓图

    5.   Damage zones for different types of cavern sections

    图  6   循环30次后损伤区分布轮廓图

    Figure  6.   Distribution of damage zones after 30 cycles

    图  7   损伤变量D演化过程线

    Figure  7.   Evolution process of damage variable D

    图  8   弹性模量演化过程线

    Figure  8.   Evolution process of elastic modulus

    图  9   泊松比演化过程线

    Figure  9.   Evolution process of Poisson’s ratio

    表  1   计算参数取值表

    Table  1   Mechanical parameters in the numerical calculation

    重度/(kN·m-3)弹性模量/GPa泊松比内摩擦角/(°)黏聚力/MPa抗拉强度/MPa
    233623.4640.33446103
    下载: 导出CSV

    表  2   计算参数

    Table  2   Parameters used in numerical model

    计算参数重度/(kN·m-3)弹性模量E/GPa泊松比黏聚力c/MPa内摩擦角φ/(°)抗拉强度T/MPa热传导系数/(W·m-1·K-1)比热/(J·kg-1·K-1)线膨胀系数/(K-1)换热系数/(W·m-2·K-1)
    围岩26.518.00.2051.505033.007711×10-5
    C30混凝土25.030.00.1673.08552.011.748001×10-56
    玻璃钢20.02.90.2201.50301300.403840.54×10-55
    下载: 导出CSV

    表  3   统计损伤模型参数取值表

    Table  3   Parameters for statistical damage model in calculation

    压应变损伤阈值εci/10-7疲劳破坏循环次数NF/104材料参数b材料参数c拉应变损伤阈值/10-3残余强度系数ABC/107H/107
    1.01.00.720.65-1.00.984.00.2086.7-0.1
    注:表3中参数是表4中基准方案对应的相关参数。对比方案中,洞型为罐式时NF=0.9×104,直墙式洞型NF取值与基准方案相同;洞室埋深为150,200 m时,NF分别取1.75×104和2.0×104;运行下限压力为6,7 MPa时,NF分别取1.6×104和1.9×104。其它参数对比方案与基准方案相同。
    下载: 导出CSV

    表  4   计算方案表

    Table  4   Schemes for calculation

    影响因素基准方案对比方案
    洞型斜墙式直墙式、罐式
    洞室埋深/m100150,200
    运行下限压力/MPa56,7
    下载: 导出CSV

    表  5   测点位置至洞壁距离

    Table  5   Distances between measured points and wall of cavern

    测点编号P1P2P3P4P5P6
    距离/m01.55.591425
    下载: 导出CSV

    表  6   第5次充放气循环后测点损伤变量和变形参数表

    Table  6   Values of damage variables and deformation parameters after 5 cycles

    影响因素P1P3
    DE/GPaμDE/GPaμ
    洞型斜墙式0.043617.2150.20930.041317.2570.2091
    直墙式0.043417.2190.20930.041317.2600.2091
    大罐式0.052617.0520.21020.042917.2270.2092
    洞室埋深100 m0.043617.2150.20930.041317.2570.2091
    150 m0.035317.3650.20850.033917.3890.2083
    200 m0.033817.3910.20830.032317.4190.2082
    运行下限压力5 MPa0.043617.2150.20930.041317.2570.2091
    6 MPa0.037217.3310.20870.035017.3710.2084
    7 MPa0.035317.3650.20850.032917.4080.2082
    下载: 导出CSV

    表  7   第30次充放气循环后测点损伤变量和变形参数表

    Table  7   Values of damage variables and deformation parameters after 30 cycles

    影响因素P1P3
    DE/GPaμDE/GPaμ
    洞型斜墙式0.079616.5670.21290.078216.5920.2128
    直墙式0.079416.5710.21290.078216.5920.2128
    大罐式0.087716.4220.21370.081316.5370.2131
    洞室埋深100 m0.079616.5670.21290.078216.5920.2128
    150 m0.064816.8330.21140.064016.8480.2113
    200 m0.062016.8850.21110.061016.9030.2110
    运行下限压力5 MPa0.079616.5670.21290.078216.5920.2128
    6 MPa0.067516.7860.21170.066116.8110.2115
    7 MPa0.063816.8520.21130.062116.8820.2112
    下载: 导出CSV
  • [1] 张丽英, 叶廷路, 辛耀中, 等. 大规模风电接入电网的相关问题及措施[J]. 中国电机工程学报, 2010, 30(25): 1-9. https://www.cnki.com.cn/Article/CJFDTOTAL-ZGDC201025002.htm

    ZHANG Li-ying, YE Ting-lu, XIN Yao-zhong, et al. Problems and measures of power grid accommodating large scale wind power[J]. Proceedings of the Chinese Society for Electrical Engineering, 2010, 30(25): 1-9. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-ZGDC201025002.htm

    [2]

    KIM H M, RUTQVIST J, RYU D W, et al. Exploring the concept of compressed air energy storage (CAES) in lined rock caverns at shallow depth: a modeling study of air tightness and energy balance[J]. Applied Energy, 2012, 92: 653-667. doi: 10.1016/j.apenergy.2011.07.013

    [3] 刘文岗, 王驹, 周宏伟, 等. 高放废物处置库花岗岩热-力耦合模拟研究[J]. 岩石力学与工程学报, 2009, 28(增刊1): 2875-2883. https://www.cnki.com.cn/Article/CJFDTOTAL-YSLX2009S1045.htm

    LIU Wen-gang, WANG Ju, ZHOU Hong-wei, et al. Coupled thermo-mechanical analysis of granite for high-level radioactive waste repository[J]. Chinese Journal of Rock Mechanics and Engineering, 2009, 28(S1): 2875-2883. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YSLX2009S1045.htm

    [4]

    XIA C C, ZHOU Y, ZHOU S W, et al. A simplified and unified analytical solution for temperature and pressure variations in compressed air energy storage caverns[J]. Renewable Energy, 2015, 74: 718-726. doi: 10.1016/j.renene.2014.08.058

    [5]

    WEI C H, ZHU W C, YU Q L, et al. Numerical simulation of excavation damaged zone under coupled thermal-mechanical conditions with varying mechanical parameters[J]. International Journal of Rock Mechanics & Mining Sciences, 2015, 75: 169-181.

    [6]

    XU X L, KARAKUS M. A coupled thermo-mechanical damage model for granite[J]. International Journal of Rock Mechanics & Mining Sciences, 2018, 103: 195-204.

    [7]

    ZHOU S W, XIA C C, HU Y S, et al. Damage modeling of basaltic rock subjected to cyclic temperature and uniaxial stress[J]. International Journal of Rock Mechanics & Mining Sciences, 2015, 77: 163-173.

    [8]

    ZHOU S W, XIA C C, ZHAO H B, et al. Statistical damage constitutive model for rocks subjected to cyclic stress and cyclic temperature[J]. Acta Geophysica, 2017, 65(5): 1-14.

    [9]

    HUANG Z Y, WAGNER D, BATHIAS C, et al. Cumulative fatigue damage in low cycle fatigue and gigacycle fatigue for low carbon-manganese steel[J]. International Journal of Fatigue, 2011, 33(2): 115-121. doi: 10.1016/j.ijfatigue.2010.07.008

    [10] 张平阳, 夏才初, 周舒威, 等. 循环加—卸载岩石本构模型研究[J]. 岩土力学, 2015, 36(12): 3354-3359. https://www.cnki.com.cn/Article/CJFDTOTAL-YTLX201512002.htm

    ZHANG Ping-yang, XIA Cai-chu, ZHOU Shu-wei, et al. A constitutive model for rock under cyclic loading and unloading[J]. Rock and Soil Mechanics, 2015, 36(12): 3354-3359. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YTLX201512002.htm

    [11]

    LI L C, WANG S Y, YU J. A coupled thermo-hydrologic- mechanical damage model and associated application in a stability analysis on a rock pillar[J]. Tunnelling and Underground Space Technology incorporating Trenchless Technology Research, 2013, 34(1): 38-53.

    [12] 王唢, 赵明阶, 蒋树屏, 等. 隧道开挖中围岩损伤演化分析及力学参数预测[J]. 岩土力学, 2009, 30(增刊1): 195-200. https://www.cnki.com.cn/Article/CJFDTOTAL-YTLX2009S1038.htm

    WANG Suo, ZHAO Ming-jie, JIANG Shu-ping, et al. Analysis of tunnel rock damage evolution process in excavation and predicting mechanical parameters[J]. Rock and Soil Mechanics, 2009, 30(S1): 195-200. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YTLX2009S1038.htm

    [13] 张媛, 许江, 杨红伟, 等. 循环荷载作用下围压对砂岩滞回环演化规律的影响[J]. 岩石力学与工程学报, 2011, 30(2): 320-326. https://www.cnki.com.cn/Article/CJFDTOTAL-YSLX201102015.htm

    ZHANG Yuan, XU Jiang, YANG Hong-wei, et al. Effect of confining pressure on evolution law of hysteresis loop of sandstone under cyclic loading[J]. Chinese Journal of Rock Mechanics and Engineering, 2011, 30(2): 320-326. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YSLX201102015.htm

    [14] 夏才初, 张平阳, 周舒威, 等. 大规模压气储能洞室稳定性和洞周应变分析[J]. 岩土力学, 2014, 35(5): 1391-1398. https://www.cnki.com.cn/Article/CJFDTOTAL-YTLX201405026.htm

    XIA Cai-chu, ZHANG Ping-yang, ZHOU Shu-wei, et al. Stability and tangential strain analysis of large-scale compressed air energy storage cavern[J]. Rock and Soil Mechanics, 2014, 35(5): 1391-1398. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YTLX201405026.htm

    [15] 尤明庆. 岩石的损伤、黏结和摩擦特性研究[J]. 岩土工程学报, 2019, 41(3): 554-560. https://www.cnki.com.cn/Article/CJFDTOTAL-YTGC201903022.htm

    YOU Ming-qing. Properties of damage, cohesion and friction of rocks[J]. Chinese Journal of Geotechnical Engineering, 2019, 41(3): 554-560. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YTGC201903022.htm

  • 期刊类型引用(3)

    1. 高雪,高燕,孙可天,史天根. 剪切过程中钙质砂的颗粒破碎与能量演化. 中山大学学报(自然科学版)(中英文). 2023(06): 11-21 . 百度学术
    2. 王开松,杨皓,汪键,雷明准. 基于离散元方法的氦冷陶瓷增殖包层球床压缩性能研究. 核聚变与等离子体物理. 2022(03): 295-300 . 百度学术
    3. 张榜,丰浩然,吴灿,陈坤,陈雪嘉,张鸿. 颗粒破碎对岩土体宏观力学性能影响的细观机理分析. 南昌工程学院学报. 2021(01): 40-44 . 百度学术

    其他类型引用(9)

图(10)  /  表(7)
计量
  • 文章访问数:  477
  • HTML全文浏览量:  60
  • PDF下载量:  175
  • 被引次数: 12
出版历程
  • 收稿日期:  2019-05-20
  • 网络出版日期:  2022-12-07
  • 刊出日期:  2020-01-31

目录

    /

    返回文章
    返回