Numerical study on accumulative damage characteristics of underground rock caverns for compressed air energy storage
-
摘要: 压气储能电站地下岩穴储气库围岩在循环运行工况下累积损伤效应明显。为研究大规模地下储气库围岩的累积损伤特性,基于损伤理论和FLAC3D软件平台,二次开发了适用于大规模地下储气库循环加卸载条件下的累积损伤分析程序,并对程序正确性进行了验证。在此基础上,研究了储气库截面型式、洞室埋深和运行下限压力等因素对储气库围岩累积损伤特性的影响。研究表明:①储气库截面型式、洞室埋深和运行下限压力都对储气库围岩变形参数损伤影响较显著,且储气库竖直方向损伤深度都大于水平方向损伤深度;②损伤区内围岩变形参数的损伤程度和损伤变量随着洞室埋深或运行下限压力的增加而减小;③对于相同截面型式的储气库,埋深和运行下限压力不同时,储气库围岩损伤区内同一测点位置的损伤变量或变形参数差值随着循环次数的增加逐渐增大。大规模地下储气库围岩累积损伤特性对全面分析储气库的安全稳定性不可以忽略。Abstract: The accumulative damage effects in the surrounding rock of underground caverns for compressed air energy storage (CAES) are obvious in cyclic operation cases. In order to explore the cumulative damage characteristics of the surrounding rock of large-scale rock caverns, based on the damaged theory and FLAC3D software platform, a routine is developed for the cumulative damaged analysis of the large-scale CAES rock caverns under periodically loading and unloading conditions and validated by a given example. On this basis, the influences of cross-section type of caverns, buried depth and the minimum operating pressure on the cumulative damage characteristics of the surrounding rock are analyzed. The results show that: (1) The cross-section type of cavern, buried depth and the minimum operating pressure are the factors significantly influencing the deformation analysis parameters of the surrounding rock, and the damaged depth in vertical direction is greater than that in horizontal direction. (2) The damage degree of deformation parameters and damage variables of the surrounding rock in damage zone decrease with the increase of the buried depth or the minimum operating pressure. (3) For the cavern with the same cross-section, the difference of damage variables and deformation parameters at the same location in the damage zone of the surrounding rock increases with the numbers of cycles both in the conditions of different burial depths and minimum operation pressures. The accumulative damage characteristics of the surrounding rock of large-scale underground caverns can not be ignored for comprehensive analysis of safety and stability of underground caverns for CAES.
-
-
表 1 计算参数取值表
Table 1 Mechanical parameters in the numerical calculation
重度/(kN·m-3) 弹性模量/GPa 泊松比 内摩擦角/(°) 黏聚力/MPa 抗拉强度/MPa 2336 23.464 0.334 46 10 3 表 2 计算参数
Table 2 Parameters used in numerical model
计算参数 重度 /(kN·m-3) 弹性模量E/GPa 泊松比 黏聚力c/MPa 内摩擦角φ/(°) 抗拉强度T/MPa 热传导系数/(W·m-1·K-1) 比热/(J·kg-1·K-1) 线膨胀系数/(K-1) 换热系数/(W·m-2·K-1) 围岩 26.5 18.0 0.205 1.50 50 3 3.00 771 1×10-5 — C30混凝土 25.0 30.0 0.167 3.08 55 2.01 1.74 800 1×10-5 6 玻璃钢 20.0 2.9 0.220 1.50 30 130 0.40 384 0.54×10-5 5 表 3 统计损伤模型参数取值表
Table 3 Parameters for statistical damage model in calculation
压应变损伤阈值εci/10-7 疲劳破坏循环次数NF/104 材料参数b 材料参数c 拉应变损伤阈值 /10-3 残余强度系数 A B C/107 H/107 1.0 1.0 0.72 0.65 -1.0 0.98 4.0 0.208 6.7 -0.1 注: 表3中参数是表4中基准方案对应的相关参数。对比方案中,洞型为罐式时NF=0.9×104,直墙式洞型NF取值与基准方案相同;洞室埋深为150,200 m时,NF分别取1.75×104和2.0×104;运行下限压力为6,7 MPa时,NF分别取1.6×104和1.9×104。其它参数对比方案与基准方案相同。表 4 计算方案表
Table 4 Schemes for calculation
影响因素 基准方案 对比方案 洞型 斜墙式 直墙式、罐式 洞室埋深/m 100 150,200 运行下限压力/MPa 5 6,7 表 5 测点位置至洞壁距离
Table 5 Distances between measured points and wall of cavern
测点编号 P1 P2 P3 P4 P5 P6 距离/m 0 1.5 5.5 9 14 25 表 6 第5次充放气循环后测点损伤变量和变形参数表
Table 6 Values of damage variables and deformation parameters after 5 cycles
影响因素 P1 P3 D E/GPa μ D E/GPa μ 洞型 斜墙式 0.0436 17.215 0.2093 0.0413 17.257 0.2091 直墙式 0.0434 17.219 0.2093 0.0413 17.260 0.2091 大罐式 0.0526 17.052 0.2102 0.0429 17.227 0.2092 洞室埋深 100 m 0.0436 17.215 0.2093 0.0413 17.257 0.2091 150 m 0.0353 17.365 0.2085 0.0339 17.389 0.2083 200 m 0.0338 17.391 0.2083 0.0323 17.419 0.2082 运行下限压力 5 MPa 0.0436 17.215 0.2093 0.0413 17.257 0.2091 6 MPa 0.0372 17.331 0.2087 0.0350 17.371 0.2084 7 MPa 0.0353 17.365 0.2085 0.0329 17.408 0.2082 表 7 第30次充放气循环后测点损伤变量和变形参数表
Table 7 Values of damage variables and deformation parameters after 30 cycles
影响因素 P1 P3 D E/GPa μ D E/GPa μ 洞型 斜墙式 0.0796 16.567 0.2129 0.0782 16.592 0.2128 直墙式 0.0794 16.571 0.2129 0.0782 16.592 0.2128 大罐式 0.0877 16.422 0.2137 0.0813 16.537 0.2131 洞室埋深 100 m 0.0796 16.567 0.2129 0.0782 16.592 0.2128 150 m 0.0648 16.833 0.2114 0.0640 16.848 0.2113 200 m 0.0620 16.885 0.2111 0.0610 16.903 0.2110 运行下限压力 5 MPa 0.0796 16.567 0.2129 0.0782 16.592 0.2128 6 MPa 0.0675 16.786 0.2117 0.0661 16.811 0.2115 7 MPa 0.0638 16.852 0.2113 0.0621 16.882 0.2112 -
[1] 张丽英, 叶廷路, 辛耀中, 等. 大规模风电接入电网的相关问题及措施[J]. 中国电机工程学报, 2010, 30(25): 1-9. https://www.cnki.com.cn/Article/CJFDTOTAL-ZGDC201025002.htm ZHANG Li-ying, YE Ting-lu, XIN Yao-zhong, et al. Problems and measures of power grid accommodating large scale wind power[J]. Proceedings of the Chinese Society for Electrical Engineering, 2010, 30(25): 1-9. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-ZGDC201025002.htm
[2] KIM H M, RUTQVIST J, RYU D W, et al. Exploring the concept of compressed air energy storage (CAES) in lined rock caverns at shallow depth: a modeling study of air tightness and energy balance[J]. Applied Energy, 2012, 92: 653-667. doi: 10.1016/j.apenergy.2011.07.013
[3] 刘文岗, 王驹, 周宏伟, 等. 高放废物处置库花岗岩热-力耦合模拟研究[J]. 岩石力学与工程学报, 2009, 28(增刊1): 2875-2883. https://www.cnki.com.cn/Article/CJFDTOTAL-YSLX2009S1045.htm LIU Wen-gang, WANG Ju, ZHOU Hong-wei, et al. Coupled thermo-mechanical analysis of granite for high-level radioactive waste repository[J]. Chinese Journal of Rock Mechanics and Engineering, 2009, 28(S1): 2875-2883. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YSLX2009S1045.htm
[4] XIA C C, ZHOU Y, ZHOU S W, et al. A simplified and unified analytical solution for temperature and pressure variations in compressed air energy storage caverns[J]. Renewable Energy, 2015, 74: 718-726. doi: 10.1016/j.renene.2014.08.058
[5] WEI C H, ZHU W C, YU Q L, et al. Numerical simulation of excavation damaged zone under coupled thermal-mechanical conditions with varying mechanical parameters[J]. International Journal of Rock Mechanics & Mining Sciences, 2015, 75: 169-181.
[6] XU X L, KARAKUS M. A coupled thermo-mechanical damage model for granite[J]. International Journal of Rock Mechanics & Mining Sciences, 2018, 103: 195-204.
[7] ZHOU S W, XIA C C, HU Y S, et al. Damage modeling of basaltic rock subjected to cyclic temperature and uniaxial stress[J]. International Journal of Rock Mechanics & Mining Sciences, 2015, 77: 163-173.
[8] ZHOU S W, XIA C C, ZHAO H B, et al. Statistical damage constitutive model for rocks subjected to cyclic stress and cyclic temperature[J]. Acta Geophysica, 2017, 65(5): 1-14.
[9] HUANG Z Y, WAGNER D, BATHIAS C, et al. Cumulative fatigue damage in low cycle fatigue and gigacycle fatigue for low carbon-manganese steel[J]. International Journal of Fatigue, 2011, 33(2): 115-121. doi: 10.1016/j.ijfatigue.2010.07.008
[10] 张平阳, 夏才初, 周舒威, 等. 循环加—卸载岩石本构模型研究[J]. 岩土力学, 2015, 36(12): 3354-3359. https://www.cnki.com.cn/Article/CJFDTOTAL-YTLX201512002.htm ZHANG Ping-yang, XIA Cai-chu, ZHOU Shu-wei, et al. A constitutive model for rock under cyclic loading and unloading[J]. Rock and Soil Mechanics, 2015, 36(12): 3354-3359. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YTLX201512002.htm
[11] LI L C, WANG S Y, YU J. A coupled thermo-hydrologic- mechanical damage model and associated application in a stability analysis on a rock pillar[J]. Tunnelling and Underground Space Technology incorporating Trenchless Technology Research, 2013, 34(1): 38-53.
[12] 王唢, 赵明阶, 蒋树屏, 等. 隧道开挖中围岩损伤演化分析及力学参数预测[J]. 岩土力学, 2009, 30(增刊1): 195-200. https://www.cnki.com.cn/Article/CJFDTOTAL-YTLX2009S1038.htm WANG Suo, ZHAO Ming-jie, JIANG Shu-ping, et al. Analysis of tunnel rock damage evolution process in excavation and predicting mechanical parameters[J]. Rock and Soil Mechanics, 2009, 30(S1): 195-200. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YTLX2009S1038.htm
[13] 张媛, 许江, 杨红伟, 等. 循环荷载作用下围压对砂岩滞回环演化规律的影响[J]. 岩石力学与工程学报, 2011, 30(2): 320-326. https://www.cnki.com.cn/Article/CJFDTOTAL-YSLX201102015.htm ZHANG Yuan, XU Jiang, YANG Hong-wei, et al. Effect of confining pressure on evolution law of hysteresis loop of sandstone under cyclic loading[J]. Chinese Journal of Rock Mechanics and Engineering, 2011, 30(2): 320-326. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YSLX201102015.htm
[14] 夏才初, 张平阳, 周舒威, 等. 大规模压气储能洞室稳定性和洞周应变分析[J]. 岩土力学, 2014, 35(5): 1391-1398. https://www.cnki.com.cn/Article/CJFDTOTAL-YTLX201405026.htm XIA Cai-chu, ZHANG Ping-yang, ZHOU Shu-wei, et al. Stability and tangential strain analysis of large-scale compressed air energy storage cavern[J]. Rock and Soil Mechanics, 2014, 35(5): 1391-1398. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YTLX201405026.htm
[15] 尤明庆. 岩石的损伤、黏结和摩擦特性研究[J]. 岩土工程学报, 2019, 41(3): 554-560. https://www.cnki.com.cn/Article/CJFDTOTAL-YTGC201903022.htm YOU Ming-qing. Properties of damage, cohesion and friction of rocks[J]. Chinese Journal of Geotechnical Engineering, 2019, 41(3): 554-560. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YTGC201903022.htm
-
期刊类型引用(3)
1. 高雪,高燕,孙可天,史天根. 剪切过程中钙质砂的颗粒破碎与能量演化. 中山大学学报(自然科学版)(中英文). 2023(06): 11-21 . 百度学术
2. 王开松,杨皓,汪键,雷明准. 基于离散元方法的氦冷陶瓷增殖包层球床压缩性能研究. 核聚变与等离子体物理. 2022(03): 295-300 . 百度学术
3. 张榜,丰浩然,吴灿,陈坤,陈雪嘉,张鸿. 颗粒破碎对岩土体宏观力学性能影响的细观机理分析. 南昌工程学院学报. 2021(01): 40-44 . 百度学术
其他类型引用(9)