• Scopus数据库收录期刊
  • 中国科技核心期刊
  • 全国中文核心期刊
  • 美国工程索引(EI)收录期刊

风化岩地基GFRP抗浮锚杆力学与变形特性现场试验

匡政, 张明义, 白晓宇, 王永洪, 闫楠, 朱磊

匡政, 张明义, 白晓宇, 王永洪, 闫楠, 朱磊. 风化岩地基GFRP抗浮锚杆力学与变形特性现场试验[J]. 岩土工程学报, 2019, 41(10): 1882-1892. DOI: 10.11779/CJGE201910012
引用本文: 匡政, 张明义, 白晓宇, 王永洪, 闫楠, 朱磊. 风化岩地基GFRP抗浮锚杆力学与变形特性现场试验[J]. 岩土工程学报, 2019, 41(10): 1882-1892. DOI: 10.11779/CJGE201910012
KUANG Zheng, ZHANG Ming-yi, BAI Xiao-yu, WANG Yong-hong, YAN Nan, ZHU Lei. Field tests on mechanics and deformation properties of GFRP anti-floating anchors in decomposed rock foundation[J]. Chinese Journal of Geotechnical Engineering, 2019, 41(10): 1882-1892. DOI: 10.11779/CJGE201910012
Citation: KUANG Zheng, ZHANG Ming-yi, BAI Xiao-yu, WANG Yong-hong, YAN Nan, ZHU Lei. Field tests on mechanics and deformation properties of GFRP anti-floating anchors in decomposed rock foundation[J]. Chinese Journal of Geotechnical Engineering, 2019, 41(10): 1882-1892. DOI: 10.11779/CJGE201910012

风化岩地基GFRP抗浮锚杆力学与变形特性现场试验  English Version

基金项目: 国家自然科学基金项目(51708316); 中国博士后科学基金项目(2018M632641)
详细信息
    作者简介:

    匡政(1994—),男,硕士研究生,主要从事地基与基础工程研究工作。E-mail:kz9403@163.com。

    通讯作者:

    白晓宇,E-mail:baixiaoyu538@163.com

Field tests on mechanics and deformation properties of GFRP anti-floating anchors in decomposed rock foundation

  • 摘要: 利用光纤光栅传感技术,对10根GFRP抗浮锚杆进行现场拉拔破坏性试验,研究了风化岩地基中GFRP抗浮锚杆的承载性能与变形特性。试验结果表明:发生滑移破坏的锚杆杆体、锚固体荷载-位移差曲线高于同型号发生断裂破坏的锚杆;锚固长度接近临界锚固长度的试验锚杆荷载-位移差曲线上升较平稳;增加杆体直径有助于提高锚杆承载能力、限制杆体位移并且降低杆体、锚固体的位移差。此外,杆体横截面轴应力沿锚固深度呈“反S型”分布,由孔口沿锚固深度方向递减;锚杆轴向界面剪应力沿锚固深度呈先增大后减小的趋势,且剪应力在锚固体内按斜向上方向由第一界面传递至第二界面。最后,利用剪应力分布简化模型求得杆体、锚固体位移差与发生滑移破坏的锚杆试验结果较为一致,可为GFRP锚杆的推广应用提供理论基础。
    Abstract: Through the field pullout destruction tests on 10 GFRP anti-floating anchors using the fiber bragg grating sensing technology, the bearing capacity and deformation properties of the GFRP anti-floating anchors in decomposed rock foundation are investigated. The test results show that the load-displacement difference curve of the anchor body and anchorage body of the GFRP anchors in the slip failure model is higher than that in the rupture failure model. The load-displacement difference curve of the anchor body and anchorage body with the anchorage length which is close to the critical one rises steadily. Increasing the diameter of the anchor body is beneficial for improving the bearing capacity of anchors, limiting the displacement of the anchor body and reducing their displacement difference. Additionally, the distribution of the axial stress on the cross-section of the anchor body, which decreases along the anchorage length, shows a reversed S form along the direction of anchorage length. The shear stress of the axial interface increases firstly and then decreases along the direction of anchorage length, and it transfers from the first interface to the second interface with an oblique upward direction. Finally, the displacement difference of the anchor body and anchorage body, calculated by the simplified model for the distribution of the shear stress, is similar to that of the GFRP anchors in the slip failure model. The research results may provide the theoretical foundation for the application of GFRP anchors.
  • [1] OU C Y, HSIEH P G.A simplified method for predicting ground settlement profiles induced by excavation in soft clay[J]. Computers and Geotechnics, 2011, 38(8): 987-997.
    [2] MALVAR L J.Tensile and bond properties of GFRP reinforcing bars[J]. Materials Journal, 1995, 92(3): 276-285.
    [3] 匡政, 白晓宇, 张明义, 等. 考虑锚固体不均匀及杆体脱黏效应的GFRP抗浮锚杆杆体荷载分布函数[J]. 岩石力学与工程学报, 2019, 38(6): 1158-1171.
    (KUANG Zheng, BAI Xiao-yu, ZHANG Ming-yi, et al.Load distribution function of GFRP anti-floating anchors considering the anchorage body unevenness and the anchor debonding effect[J]. Chinese Journal of Rock Mechanics and Engineering, 2019, 38(6): 1158-1171. (in Chinese))
    [4] ZHU H H, YIN J H, YEUNG A T, et al.Field pullout testing and performance evaluation of GFRP soil nails[J]. Journal of Geotechnical and Geoenvironmental Engineering, 2010, 137(7): 633-642.
    [5] FAVA G, CARVELLI V, PISANI M A.Remarks on bond of GFRP rebars and concrete[J]. Composites Part B: Engineering, 2016, 93: 210-220.
    [6] TASTANI S P, PANTAZOPOULOU S J.Bond of GFRP bars in concrete: experimental study and analytical interpretation[J]. Journal of Composites for Construction, 2006, 10(5): 381-391.
    [7] BENMOKRANE B, XU H, BELLAVANCE E.Bond strength of cement grouted glass fiber reinforced plastic (GFRP) anchor bolts[J]. International Journal of Rock Mechanics & Mining Sciences & Geomechanics Abstracts, 1996, 33(5): 455-465.
    [8] 尤春安. 全长粘结式锚杆的受力分析[J]. 岩石力学与工程学报, 2000, 19(3): 339-341.
    (YOU Chun-an.Mechanical analysis of fully-grouted anchor[J]. Chinese Journal of Rock Mechanics and Engineering, 2000, 19(3): 339-341. (in Chinese))
    [9] MARANAN G B, MANALO A C, KARUNASENA W, et al.Pullout behaviour of GFRP bars with anchor head in geopolymer concrete[J]. Composite Structures, 2015, 132: 1113-1121.
    [10] KOU H, GUO W, ZHANG M.Pullout performance of GFRP anti-floating anchor in weathered soil[J]. Tunnelling and Underground Space Technology, 2015, 49: 408-416.
    [11] LEE J Y, KIM T Y, KIM T J, et al.Interfacial bond strength of glass fiber reinforced polymer bars in high-strength concrete[J]. Composites Part B: Engineering, 2008, 39(2): 258-270.
    [12] 白晓宇, 张明义, 刘鹤, 等. 风化岩地基全螺纹玻璃纤维增强聚合物抗浮锚杆承载特征现场试验[J]. 岩土力学, 2014, 35(9): 2464-2472.
    (BAI Xiao-yu, ZHANG Ming-yi, LIU He, et al.Field test on load-bearing characteristics of full-thread GFRP anti-floating anchor in weather rock site[J]. Rock and Soil Mechanics, 2014, 35(9): 2464-2472. (in Chinese))
    [13] LAU K T, YUAN L, ZHOU L M, et al.Strain monitoring in FRP laminates and concrete beams using FBG sensors[J]. Composite Structures, 2001, 51(1): 9-20.
    [14] 隋海波, 施斌, 张丹, 等. 基于BOTDR 的锚杆拉拔试验研究[J]. 岩土工程学报, 2008, 30(5): 755-759.
    (SUI Hai-bo, SHI Bin, ZHANG Dan, et al.BOTDR-based pull-out tests on anchor bolts[J]. Chinese Journal of Geotechnical Engineering, 2008, 30(5): 755-759. (in Chinese))
    [15] LENG J, ASUNDI A.Structural health monitoring of smart composite materials by using EFPI and FBG sensors[J]. Sensors & Actuators A Physical, 2003, 103(3): 330-340.
    [16] 白晓宇, 张明义, 朱磊, 等. 全长黏结GFRP 抗浮锚杆界面剪切特性试验研究[J]. 岩石力学与工程学报, 2018, 37(6): 1407-1418.
    (BAI Xiao-yu, ZHANG Ming-yi, ZHU Lei, et al.Experimental study on shear characteristics of interface of full-bonding glass fiber reinforced polymer anti-floating anchors[J]. Chinese Journal of Rock Mechanics and Engineering, 2018, 37(6): 1407-1418. (in Chinese))
    [17] WANG B, ZHOU J N, JIN F N, et al.Study on critical anchorage length of bolts by numerical simulation method[C]// Applied Mechanics and Materials Trans Tech Publications. Sydney, 2012, 204: 4771-4775.
    [18] XU D, YIN J.Analysis of excavation induced stress distributions of GFRP anchors in a soil slope using distributed fiber optic sensors[J]. Engineering Geology, 2016, 213: 55-63.
    [19] GHALY A, HANNA A.Model investigation of the performance of single anchors and groups of anchors[J]. Canadian Geotechnical Journal, 1994, 31(2): 273-284.
    [20] 刘桂秋, 施楚贤, 刘一彪. 砌体及砌体材料弹性模量取值的研究[J]. 湖南大学学报(自科版), 2008, 35(4): 29-32.
    (LIU Gui-qiu, SHI Chu-xian, LIU Yi-biao.Analyses of the elastic modulus values of masonry[J]. Journal of Hunan University, 2008, 35(4): 29-32. (in Chinese))
    [21] 付文光, 柳建国, 杨志银. 抗浮锚杆及锚杆抗浮体系稳定性验算公式研究[J]. 岩土工程学报, 2014, 36(11): 1971-1982.
    (FU Wen-guang, LIU Jian-guo, YANG Zhi-yin.Formulae for calculating stability of anti-floating anchor and anchor anti-floating system[J]. Chinese Journal of Geotechnical Engineering, 2014, 36(11): 1971-1982. (in Chinese))
    [22] 白晓宇, 张明义, 闫楠. 两种不同材质抗浮锚杆锚固性能的现场对比试验研究与机理分析[J]. 土木工程学报, 2015, 48(8): 38-46.
    (BAI Xiao-yu, ZHANG Ming-yi, YAN Nan, et al.Field contrast test and mechanism analysis on anchorage performance of anti-floating anchors with two different materials[J]. China Civil Engineering Journal, 2015, 48(8): 38-46. (in Chinese))
    [23] 李国维, 于威, 李峰, 等. 引江济淮软岩钢筋、GFRP筋锚杆承载差异试验[J]. 岩石力学与工程学报, 2018, 37(3): 601-610.
    (LI Guo-wei, YU Wei, LI Feng, et al.Experiment on the difference of load bearing of GFRP and steel bars in soft-rock slopes of water diversion from Yangtze to Huai[J]. Chinese Journal of Rock Mechanics & Engineering, 2018, 37(3): 601-610. (in Chinese))
    [24] KIM N K.Performance of tension and compression anchors in weathered soil[J]. Journal of Geotechnical & Geoenvironmental Engineering, 2003, 129(12): 1138-1150.
计量
  • 文章访问数:  267
  • HTML全文浏览量:  16
  • PDF下载量:  145
  • 被引次数: 0
出版历程
  • 收稿日期:  2018-08-27
  • 发布日期:  2019-10-24

目录

    /

    返回文章
    返回