• 全国中文核心期刊
  • 中国科技核心期刊
  • 美国工程索引(EI)收录期刊
  • Scopus数据库收录期刊

基于透明土材料的沉桩过程土体三维变形模型试验研究

曹兆虎, 孔纲强, 刘汉龙, 周航

曹兆虎, 孔纲强, 刘汉龙, 周航. 基于透明土材料的沉桩过程土体三维变形模型试验研究[J]. 岩土工程学报, 2014, 36(2): 395-400. DOI: 10.11779/CJGE201402018
引用本文: 曹兆虎, 孔纲强, 刘汉龙, 周航. 基于透明土材料的沉桩过程土体三维变形模型试验研究[J]. 岩土工程学报, 2014, 36(2): 395-400. DOI: 10.11779/CJGE201402018
CAO Zhao-hu, KONG Gang-qiang, LIU Han-long, ZHOU Hang. Model tests on 3-D soil deformation during pile penetration using transparent soils[J]. Chinese Journal of Geotechnical Engineering, 2014, 36(2): 395-400. DOI: 10.11779/CJGE201402018
Citation: CAO Zhao-hu, KONG Gang-qiang, LIU Han-long, ZHOU Hang. Model tests on 3-D soil deformation during pile penetration using transparent soils[J]. Chinese Journal of Geotechnical Engineering, 2014, 36(2): 395-400. DOI: 10.11779/CJGE201402018

基于透明土材料的沉桩过程土体三维变形模型试验研究  English Version

基金项目: 国家自然科学基金项目(51278170); 国家自然科学基金高铁联合基金项目(U1134207); 长江学者和创新团队发展计划项目(IRT1125)
详细信息
    作者简介:

    曹兆虎(1986- ),男,江苏盐城人,博士研究生,主要从事岩土工程可视化及桩基础方面的研究工作。E-mail: caozhaohuzj@sina.com。

  • 中图分类号: TU470

Model tests on 3-D soil deformation during pile penetration using transparent soils

  • 摘要: 为了对沉桩过程中桩周土体内部的变形特性进行非插入式测量,利用正十二烷、十五号白油混合液和玻璃砂合成透明土,并在此基础上设计了沉桩模型试验系统;该系统包括激光器、线性发生器、CCD(charge-coupled device)相机、沉桩加载仪和计算机等。激光经线性发生器转化后将透明土样切分,形成土体内部颗粒切面,CCD相机连续拍摄沉桩过程中该切面的图像,并通过计算机中图像处理软件进行分析,得到该切面变形前后的变形位移场。通过与数值模型的对比分析,验证模型试验结果的可靠性。对多个切面变形前后的位移场进行分析,从而得到沉桩过程中土体变形的完整三维变形场。试验结果表明,试验条件下沉桩水平挤土位移影响范围为8R;与常规模型试验方法相比,方法实现了土体内部变形的三维测量,有助于了解土体在各种荷载条件下的变形机理。
    Abstract: In order to meet the need for nonintrusively measuring the spatial deformation pattern in soils during pile penetration, the transparent soils made of glass sand and pore fluid with a matching refractive index are used. A small-scale laboratory modeling test system is designed. The system consists of a laser, a linear generator, a charge-coupled device (CCD) camera, a loading frame and a computer. A distinctive speckle pattern is generated by the interaction between the laser light and the transparent soils. A sequence of laser speckle images are recorded during pile penetration. They are then analyzed using the image processing technique, and the complete 2-D displacement field is obtained. By combining the multiple slices of 2-D displacement fields, a 3-D displacement field is obtained. The observed horizontal influence zone is 8R from the pile shaft. The results show good agreement with the theoretical predictions of numerical method. Compared with the traditional test methods, the proposed system is more suitable for more advanced 3-D soil deformation measurements and can be employed to study the deformation mechanism of soils.
  • [1] 陈 文, 施建勇, 龚和平, 等. 饱和黏土中静压桩挤土效应的离心机模型试验研究[J]. 河海大学学报, 1999, 27(6): 103-109. (CHEN Wen, SHI Jian-yong, GONG He-ping, et al. Centrifugal model tests of piles jacked in saturated clay[J]. Journal of Hohai University, 1999, 27(6): 103-109. (in Chinese))
    [2] 徐建平, 周 健, 许朝阳, 等. 沉桩挤土效应的模型试验研究[J]. 岩土力学, 2000, 21(3): 235-238. (XU Jian-ping, ZHOU Jian, XU Zhao-yang, et al. Model test research on pile driving effect of squeezing against soil[J]. Rock and Soil Mechanics, 2000, 21(3): 235-238. (in Chinese))
    [3] 周 健, 邓益兵, 叶建忠, 等. 砂土中静压桩沉桩过程试验研究与颗粒流模拟[J]. 岩土工程学报, 2009, 31(4): 501-507. (ZHOU Jian, DENG Yi-bing, YE Jian-zhong, et al. Experimental and numerical analysis of jacked piles during installation in sand[J]. Chinese Journal of Geotechnical Engineering, 2009, 31(4): 501-507. (in Chinese))
    [4] ISKANDER M, LAI J, OSWALD C, et al. Development of a transparent material to model the geotechnical properties of soils[J]. Geotechnical Testing Journal, 1994, 17(4): 425-433.
    [5] LEHANE B M, GILL D R. Displacement fields induced by penetrometer installation in an artificial soil[J]. International Journal of Physical Modelling in Geotechnics, 2004, 1(1): 25-36.
    [6] WHITE D J, BOLTON M D. Displacement and strain paths during plane-strain model pile installation in sand[J]. Géotechnique, 2004, 54(6): 375-397.
    [7] 李元海, 朱合华, 上野胜利, 等. 基于图像相关分析的砂土模型试验变形场测量[J]. 岩土工程学报, 2004, 26(1): 36-41. (LI Yuan-hai, ZHU He-hua, KATSUTOSHI Ueno, et al. Deformation field measurement for granular soil model using image analysis[J]. Chinese Journal of Geotechnical Engineering, 2004, 26(1): 36-41. (in Chinese))
    [8] 刘 君, 刘福海, 孔宪京, 等. PIV技术在大型振动台模型试验中的应用[J]. 岩土工程学报, 2010, 32(3): 368-374. (LIU Jun, LIU Fu-hai, KONG Xian-jing, et al. Application of PIV in large-scale shaking table model tests[J]. Chinese Journal of Geotechnical Engineering, 2010, 32(3): 368-374. (in Chinese))
    [9] ISKANDER M, LIU Jin-yuan, SADEK S. Transparent amorphous silica to model clay[J]. Journal of Geotechnical and Geoenvironmental Engineering, 2002, 128(3): 262-273.
    [10] ISKANDER M, SADEK S, LIU Jin-yuan. Optical measurement of deformation using transparent silica to model sand[J]. International Journal of Physical Modelling in Geotechnics, 2002, 2(4): 13-26.
    [11] CAO Zhao-hu, LIU Jin-yuan, LIU Han-long. Transparent fused silica to model natural sand[C]// Pan-am CGS Geotechnical Conference. Toronto, 2011.
    [12] 孔纲强, 刘 璐, 刘汉龙, 等. 玻璃砂透明土变形特性三轴试验研究 [J]. 岩土工程学报, 2013, 35(6): 1140-1146. (GONG Gang-qiang, LIU Lu, LIU Han-long, et al. Triaxial tests on deformation characteristics of transparent glass sand[J]. Chinese Journal of Geotechnical Engineering, 2013, 35(6): 1140-1146. (in Chinese))
    [13] NI Qing, HIRD C C, GUYMER I. Physical modelling of pile penetration in clay using transparent soil and particle image velocimetry[J]. Géotechnique, 2010, 60(2): 121-132.
    [14] LIU Jin-yuan. Visualization of 3-D deformation using transparent “soil” models[D]. New York: Polytechnic University, 2003.
    [15] 费 康, 张建伟. Abaqus 在岩土工程中的应用[M]. 北京: 中国水利水电出版社, 2010. (FEI Kang, ZHANG Jian-wei. Application of Abaqus in geotechnical engineering[M]. Beijing: China WaterPower Press, 2010. (in Chinese)).
    [16] SHENG Dai-chao, NAZEM Majidreza, CARTER John P. Some computational aspects for solving deep penetration problems in geomechanics[J]. Computational Mechanics, 2009, 44(4): 549-561.
    [17] 毕庆涛, 肖昭然, 丁树云,等. 静压桩压入过程的数值模拟[J]. 岩土工程学报, 2011, 33(增刊2): 74-78. (BI Qing-tao, XIAO Zhao-ran, DING Shu-yun, et al. Numerical modelling of penetrating of jacked piles[J]. Chinese Journal of Geotechnical Engineering, 2011, 33(S2): 74-78. (in Chinese))
    [18] ISKANDER M, LIU Jin-yuan. Spatial deformation measurement using transparent soil[J]. Geotechnical Testing Journal, 2010, 33(4): 314-321.
  • 期刊类型引用(13)

    1. 满轲,柳宗旭,商艳,宋志飞,刘晓丽,苏宝. 基于灰色关联分析下深度学习盾构姿态预测模型. 工程科学与技术. 2025(02): 203-213 . 百度学术
    2. 满轲,曹子祥,刘晓丽,宋志飞,柳宗旭,刘汭琳,武立文. 地质突变条件下基于组合模型的围岩等级和TBM掘进参数预测. 河海大学学报(自然科学版). 2024(01): 55-62 . 百度学术
    3. 邓志兴,谢康,李泰灃,苏谦,韩征,肖宪普. 基于机器学习的高铁边坡位移预测不确定性度量与应用. 中国铁道科学. 2024(01): 56-67 . 百度学术
    4. 姜浩,郑亚强,金治军,马庆,董强,郑德焰,林峰,赵炳武. 基于ANN算法的钢结构安装工程质量状态评价. 化工管理. 2024(06): 102-109 . 百度学术
    5. 郝晶晶,段鹏鑫,陈雨欣,段晓晨. 基于IGWO-SVR的地铁车站投资预测. 铁道学报. 2024(05): 179-188 . 百度学术
    6. 张洁. 新疆超长隧洞TBM智能掘进施工方法研究. 黑龙江水利科技. 2024(08): 123-125 . 百度学术
    7. 林平,李有鹏,谭彬. 基于Bootstrap方法和LSSVM模型的滑坡位移区间预测. 测绘与空间地理信息. 2024(09): 48-51+56 . 百度学术
    8. 张琦,甘超,曹卫华. 大洋钻探过程钻速在线区间预测方法——以微型钻探船室内模拟实验为例. 钻探工程. 2024(05): 45-52 . 百度学术
    9. 赵高峰,姜宝元,芮福鑫,马洪素,李洁勇,赵晓豹,龚秋明. 基于数值仿真的复杂岩体TBM掘进性能评估模型. 中南大学学报(自然科学版). 2023(03): 984-997 . 百度学术
    10. 常建涛,乔子萱,孔宪光,杨胜康,罗才文. 多维非线性特征重构与融合的复杂产品工期预测方法. 机械工程学报. 2023(06): 294-308 . 百度学术
    11. 禹海涛,朱晨阳. 基于BP神经网络的圆形隧道地震响应预测方法及参数分析. 隧道与地下工程灾害防治. 2023(03): 19-26 . 百度学术
    12. 彭继慎,郝茗,宋立业,李希桐. 基于TSSA-SVR算法的TBM掘进速度预测. 辽宁工程技术大学学报(自然科学版). 2023(05): 634-640 . 百度学术
    13. 闫静,张雪英,李凤莲,陈桂军,黄丽霞. 结合栈式监督AE与可变加权ELM的回归预测模型. 计算机工程. 2022(08): 62-69+76 . 百度学术

    其他类型引用(11)

计量
  • 文章访问数: 
  • HTML全文浏览量:  0
  • PDF下载量: 
  • 被引次数: 24
出版历程
  • 收稿日期:  2013-06-20
  • 发布日期:  2014-02-20

目录

    /

    返回文章
    返回