• 全国中文核心期刊
  • 中国科技核心期刊
  • 美国工程索引(EI)收录期刊
  • Scopus数据库收录期刊

列车移动荷载下高速铁路板式轨道路基动力性态的全比尺物理模型试验

蒋红光, 边学成, 徐翔, 陈云敏, 蒋建群

蒋红光, 边学成, 徐翔, 陈云敏, 蒋建群. 列车移动荷载下高速铁路板式轨道路基动力性态的全比尺物理模型试验[J]. 岩土工程学报, 2014, 36(2): 354-362. DOI: 10.11779/CJGE201402013
引用本文: 蒋红光, 边学成, 徐翔, 陈云敏, 蒋建群. 列车移动荷载下高速铁路板式轨道路基动力性态的全比尺物理模型试验[J]. 岩土工程学报, 2014, 36(2): 354-362. DOI: 10.11779/CJGE201402013
JIANG Hong-guang, BIAN Xue-cheng, XU Xiang, CHEN Yun-min, JIANG Jian-qun. Full-scale model tests on dynamic performances of ballastless high-speed railways under moving train loads[J]. Chinese Journal of Geotechnical Engineering, 2014, 36(2): 354-362. DOI: 10.11779/CJGE201402013
Citation: JIANG Hong-guang, BIAN Xue-cheng, XU Xiang, CHEN Yun-min, JIANG Jian-qun. Full-scale model tests on dynamic performances of ballastless high-speed railways under moving train loads[J]. Chinese Journal of Geotechnical Engineering, 2014, 36(2): 354-362. DOI: 10.11779/CJGE201402013

列车移动荷载下高速铁路板式轨道路基动力性态的全比尺物理模型试验  English Version

基金项目: 国家自然科学基金项目(51178418,51222803); 2012年国家留学基金项目(留金发[2012]3013); 浙江省重点科技创新团队(2009R50050)
详细信息
    作者简介:

    蒋红光(1985- ),男,山东临沂人,博士研究生,主要从事土动力学、路基工程及交通岩土工程等方面的研究。E-mail: hongguang601@163.com。

    通讯作者:

    边学成

  • 中图分类号: TU470

Full-scale model tests on dynamic performances of ballastless high-speed railways under moving train loads

  • 摘要: 列车移动荷载下高速铁路板式轨道路基的振动特性和动力荷载传递规律对高速铁路的设计和运行维护十分重要。介绍了一种全比尺的高速铁路板式轨道路基模型和可模拟真实列车荷载高速移动的分布式加载系统,最高模拟列车速度可达360 km/h。基于该模型试验平台,对中国高速列车以不同速度运行下板式轨道路基的振动和动应力特性进行了试验研究。结果表明轨道结构的振动随着车速的提高近似呈线性增加的趋势;路基结构的振动存在阶段性,列车速度低于180 km/h时振动速度增长缓慢,而后随着速度的增加迅速增大;基床表层的碎石层对振动在路基中的传播有很好的吸收作用。试验发现,尽管无砟轨道路基表面的动应力水平远低于有砟轨道,但无砟轨道路基动应力沿深度的衰减速度要缓于有砟轨道。试验进一步发现,无砟轨道路基动应力的增长模式与列车速度和土体所处深度均有关,基于试验结果提出了用于预测高速铁路路基动应力的经验表达式。
    Abstract: The dynamic performances of ballastless high-speed railways under moving train loads, such as vibration behaviors and dynamic soil stresses, are two important issues in the design and maintenance of high-speed railways. Based on an established full-scale physical model for slab tracks, a distributed loading system consisting of eight high-performance hydraulic actuators is developed to simulate the moving train loads with the highest speed of 360 km/h. The tests results such as vibration velocity and dynamic soil stress are offered for a better understanding of dynamic behaviors of slab tracks at various train speeds. The vibration velocity of track structure exhibits an approximately linear tendency with the train speed, while it begins to grow faster until the train speed reaches 180 km/h. The roadbed acts as a nice damping layer for vibration reduction. Although the dynamic soil stress at roadbed surface is much lower in ballastless tracks than that in ballasted tracks, it decreases much slowly with the soil depth in ballastless tracks. Meanwhile, the dynamic amplification coefficient of soil stress is found to be related to both the train speed and the soil depth. An improved empirical formula is then proposed to determine the dynamic soil stress of ballastless high-speed railways.
  • [1] STEENBERGEN M, METRIKINE A V, ESVELD C. Assessment of design parameters of a slab track railway system from a dynamic viewpoint[J]. Journal of Sound and Vibration, 2007, 306(3): 361-371.
    [2] 范生波. 高速铁路无砟轨道路基东响应测试分析[D]. 成都:西南交通大学, 2010. (FAN Sheng-bo. Analysis on experiment of dynamic response in ballastless track subgrade of high speed railway[D]. Chengdu: Southwest Jiaotong University, 2010. (in Chinese))
    [3] 杨果林, 刘晓红. 高速铁路无砟轨道红黏土路基沉降控制与动力稳定性[M]. 北京: 中国铁道出版社, 2010. (YANG Guo-lin, LIU Xiao-hong. Red clay subgrade settlement control and dynamic stability analysis of ballastless track of high speed railway[M]. Beijing: China Railway Publishing House, 2010. (in Chinese))
    [4] ANDERSON W, KEY A. Model testing of two-layer railway track ballast[J]. Journal of Geotechnical and Geoenvironmental Engineering, 2000, 126(4): 317-323.
    [5] COX S J, WANG A, MORISON C, et al. A test rig to investigate slab track structures for controlling ground vibration[J]. Journal of Sound and Vibration, 2006, 293(3-5): 901-909.
    [6] 詹永祥, 蒋关鲁. 无碴轨道路基基床动力特性的研究[J]. 岩土力学, 2010, 31(2): 392-396. (ZHAN Yong-xiang, JIANG Guan-lu. Study of dynamic characteristics of soil subgrade bed for ballastless track[J]. Rock and Soil Mechanics, 2010, 31(2): 392-396. (in Chinese))
    [7] BROWN S. Soil mechanics in pavement engineering[J]. Géotechnique, 1996, 46(3): 383-426.
    [8] MOMOYA Yoshitsugu, SEKINE Etsuo, TATSUOKA Fumio. Deformation characteristics of railway roadbed and subgrade under moving-wheel load[J]. Soils and Foundations, 2005, 45(4): 99-118.
    [9] SHARE A Al, DUHAMEL D, SAB K, et al. Experimental settlement and dynamic behavior of a portion of ballasted railway track under high speed trains[J]. Journal of Sound and Vibration, 2008, 316(1-5): 211-233.
    [10] TATSUOKA Ishikawa, SEKINE Etsuo, MIURA Seiichi. Cyclic deformation of granular material subjected to moving-wheel loads[J]. Canadian Geotechnical Journal, 2011, 48: 691-703.
    [11] LEKARP F, ISACSSON U, DAWSON A R. State of the art. I: Resilient response of unbound aggregates[J]. Journal of Transportation Engineering, 2000a, 126(1): 66-75.
    [12] LEKARP F, ISACSSON U, DAWSON A R. State of the art. II: Permanent strain response of unbound material[J]. Journal of Transportation Engineering, 2000a, 126(1): 76-83.
    [13] PRIEST J A, POWRIE W. Determination of dynamic track modulus from measurement of track velocity during train passage[J]. Journal of Geotechnical and Geoenvironmental Engineering, 2009, 135(11): 1732-1740.
    [14] KRYLOV V V. Generation of ground vibrations by superfast trains[J]. Applied Acoustics, 1995, 44(2): 149-164.
    [15] TAKEMIYA H, BIAN Xue-cheng. Substructure simulation of inhomogeneous track and layered ground dynamic interaction under train passage[J]. Journal of Engineering Mechanics, 2005, 131(7): 699-711.
    [16] 边学成, 蒋红光, 金皖锋, 等. 板式轨道-路基相互作用及荷载传递规律的物理模型试验研究[J]. 岩土工程学报, 2012, 34(8): 1488-1495. (BIAN Xue-Cheng, JIANG Hong-Guang, JIN Wan-Feng, et al. Full-scale model tests on slab track-subgrade interaction and load transfer in track system[J]. Chinese Journal of Geotechnical Engineering, 2012, 34(8): 1488-1495. (in Chinese))
    [17] SONG Huan-ping, BIAN Xue-cheng, JIANG Jian-qun, et al. An analytical approach for slab track vibration with train-track-ground coupling effect[C]// Proc 8th Int Conf on Structural Dynamics. Belgium, 2011.
    [18] 刘晓红, 杨果林, 王亮亮. 高铁无碴轨道红黏土路堑基床动响应测试与分析[J]. 工程勘察, 2011, 39(8): 12-18. (LIU Xiao-hong, YANG Guo-lin, WANG Liang-liang. Dynamic response testing and analysis on red-clay cutting bed under ballastless track of high-speed railway[J], Geotechnical Investigation & Surveying, 2011, 39(8): 12-18. (in Chinese))
    [19] 胡一峰, 李怒放. 高速铁路无砟轨道路基设计原理[M]. 北京: 中国铁道出版社, 2010. (HU Yi-feng, LI Nu-fang. Theory of ballastless track-subgrade for high speed railway[M]. Beijing: China Railway Publishing House, 2010. (in Chinese))
    [20] 董 亮, 赵成刚, 蔡德钩, 等. 高速铁路无砟轨道路基动力特性数值模拟和试验研究[J]. 土木工程学报, 2008, 41(10): 81-86. (DONG Liang, ZHAO Cheng-gang, CAI De-gou, et al. Experimental validation of a numerical model for prediction of the dynamic response of ballastless subgrade of high-speed railways[J]. China Civil Engineering Journal, 2008, 41(10): 81-86. (in Chinese))
    [21] 聂志红, 阮 波, 李 亮. 秦沈客运专线路堑基床结构动态测试分析[J]. 振动与冲击, 2005, 24(2): 30-32. (NIE Zhi-hong, RUAN Bo, LI Liang. Testing and analysis on dynamic performance of subgrade of Qinshen railway[J]. Journal of Vibration and Shock, 2005, 24(2): 30-32. (in Chinese))
    [22] 韩自力, 张千里. 既有线提速路基动应力分析[J]. 中国铁道科学, 2005, 26(5): 1-5. (HAN Zi-li, ZHANG Qian-li. Dynamic stress analysis on speed-increase subgrade of existing railway[J]. China Railway Science, 2005, 26(5): 1-5. (in Chinese))
    [23] 叶阳升, 张千里, 蔡德钩, 等. 高速铁路桩网复合地基低矮路基动静荷载传递特性研究[J]. 高速铁路技术, 2010, 1(1): 10-15. (YE Yang-sheng, ZHANG Qian-li, CAI De-gou, et al. On static and dynamic load transfer peculiarity of low embankment for high speed railway pile-net composite foundation[J]. High Speed Railway Technology, 2010, 1(1): 10-15. (in Chinese))
    [24] 中华人民共和国铁道部. 高速铁路设计规范(试行)[S]. 北京: 中国铁道出版社, 2009. (Ministry of Railways of the People's Republic of China. Code for design of high speed railway[S]. Beijing: China Railway Publishing House, 2009. (in Chinese))
  • 期刊类型引用(13)

    1. 汪云飞,王海军,赵新铭,汤雷,潘建伍. 热载荷下脆性固体中三维平行内裂纹的相互作用:实验和数值模拟(英文). Journal of Central South University. 2023(01): 331-350 . 百度学术
    2. 胡南燕,黄建彬,罗斌玉,李雪雪,陈敦熙,曾子懿,付晗,娄家豪. 环氧树脂基脆性透明岩石相似材料配比试验研究. 岩土力学. 2023(12): 3471-3480 . 百度学术
    3. Jiyun Xu,Hanzhang Li,Haijun Wang,Lei Tang. Experimental study on 3D internal penny-shaped crack propagation in brittle materials under uniaxial compression. Deep Underground Science and Engineering. 2023(01): 37-51 . 必应学术
    4. Haijun Wang,Hanzhang Li,Lei Tang,Xuhua Ren,Qingxiang Meng,Chun Zhu. Fracture of two three-dimensional parallel internal cracks in brittle solid under ultrasonic fracturing. Journal of Rock Mechanics and Geotechnical Engineering. 2022(03): 757-769 . 必应学术
    5. Haijun Wang,Hanzhang Li,Lei Tang,Jianchun Li,Xuhua Ren. Fracturing behavior of brittle solids containing 3D internal crack of different depths under ultrasonic fracturing. International Journal of Mining Science and Technology. 2022(06): 1245-1257 . 必应学术
    6. 王海军,乐成军,汤雷,赵初,李汉章,戚海棠. 基于3D-ILC含水平内裂纹脆性固体三点弯断裂特性研究. 岩土力学. 2021(10): 2773-2784 . 百度学术
    7. 王海军,顾浩,任然,汤雷,郁舒阳,戚海棠. 基于3D-ILC脆性材料双共面与障碍内裂纹扩展特性. 煤炭学报. 2021(S1): 263-273 . 百度学术
    8. 张志韬,王海军,汤雷,赵初,李汉章,苏正洋. 基于3D-ILC含偏心内裂纹半圆弯拉断裂特性研究. 岩土力学. 2020(01): 111-122+131 . 百度学术
    9. 王海军,郁舒阳,李汉章,任然,汤雷,朱文炜. 基于3D-ILC超声场致脆性固体单内裂纹扩展规律研究. 岩石力学与工程学报. 2020(05): 938-948 . 百度学术
    10. 王海军,郁舒阳,汤子璇,汤雷,任然,徐进. 基于3D-ILC含60°内裂纹脆性球体Ⅰ-Ⅱ-Ⅲ型断裂研究. 岩土力学. 2020(05): 1573-1582 . 百度学术
    11. 王海军,张珂,任然,汤雷,郁舒阳. 基于3D-ILC含60°平行双内裂纹脆性巴西圆盘断裂特性. 工程科学与技术. 2020(04): 184-193 . 百度学术
    12. 金爱兵,王树亮,王本鑫,孙浩,陈帅军,朱东风. 基于DIC的3D打印交叉节理试件破裂机制研究. 岩土力学. 2020(12): 3862-3872 . 百度学术
    13. 王海军,郁舒阳,任然,汤雷,李欣昀,贾宇. 基于3D-ILC含内裂纹孔口脆性固体断裂特性试验. 岩土力学. 2019(06): 2200-2212 . 百度学术

    其他类型引用(3)

计量
  • 文章访问数: 
  • HTML全文浏览量:  0
  • PDF下载量: 
  • 被引次数: 16
出版历程
  • 收稿日期:  2013-07-13
  • 发布日期:  2014-02-20

目录

    /

    返回文章
    返回