• 全国中文核心期刊
  • 中国科技核心期刊
  • 美国工程索引(EI)收录期刊
  • Scopus数据库收录期刊

三星堆祭祀区地表干缩开裂病害发育后期发展演化特征

赵凡, 姚雪, 胡芮, 李思凡, 黎俊豪

赵凡, 姚雪, 胡芮, 李思凡, 黎俊豪. 三星堆祭祀区地表干缩开裂病害发育后期发展演化特征[J]. 岩土工程学报, 2025, 47(5): 1025-1035. DOI: 10.11779/CJGE20231288
引用本文: 赵凡, 姚雪, 胡芮, 李思凡, 黎俊豪. 三星堆祭祀区地表干缩开裂病害发育后期发展演化特征[J]. 岩土工程学报, 2025, 47(5): 1025-1035. DOI: 10.11779/CJGE20231288
ZHAO Fan, YAO Xue, HU Rui, LI Sifan, LI Junhao. Late-stage development and evolution characteristics of surface desiccation cracking in sacrifice area of Sanxingdui site[J]. Chinese Journal of Geotechnical Engineering, 2025, 47(5): 1025-1035. DOI: 10.11779/CJGE20231288
Citation: ZHAO Fan, YAO Xue, HU Rui, LI Sifan, LI Junhao. Late-stage development and evolution characteristics of surface desiccation cracking in sacrifice area of Sanxingdui site[J]. Chinese Journal of Geotechnical Engineering, 2025, 47(5): 1025-1035. DOI: 10.11779/CJGE20231288

三星堆祭祀区地表干缩开裂病害发育后期发展演化特征  English Version

基金项目: 

国家重点研发计划项目 2020YFC1522900

四川省科技计划项目 2023YFS0463

教育部人文社会科学研究项目 22YJCZH219

西南民族大学中央高校基本科研业务费专项资金项目 2022SCXTD01

详细信息
    作者简介:

    赵凡(1987—),男,博士研究生,副研究员,主要从事岩土文物劣化机理与保护技术方面的研究工作。E-mail: zhaofan_163@163.com

    通讯作者:

    姚雪, E-mail: yaozhibushixue0726@126.com

  • 中图分类号: TU449

Late-stage development and evolution characteristics of surface desiccation cracking in sacrifice area of Sanxingdui site

  • 摘要: 针对黏性土干缩开裂发育进程问题,以三星堆祭祀区考古遗址地表干缩开裂病害为对象,通过病害发育及赋存环境现场原位长时序监测,分析病害发育后期干缩裂隙发展演化特征,探讨病害发育与赋存环境的关联性、裂隙尺寸变化的作用方式和裂隙灌浆方法治理病害的可行性。结果表明,裂隙形态和尺寸变化主要表现为部分主干裂隙不断扩展及少量次级裂隙间歇性延伸或萌生,主干裂隙宽度和深度总体不断增大并趋于相对稳定,其尺寸越大,增大越明显。在主控环境因素地下土壤含水率时空变化驱动下,不同深度土体经历不同收缩阶段,加之裂块自身应力调整,抑制尺寸较小裂隙发育,导致裂隙尺寸变化呈现出时空分异性。采用裂隙灌浆治理病害从方法层面基本可行,关键在于选择裂隙发育相对稳定时间。
    Abstract: To explore the development process of desiccation cracking in clay soil, the desiccation cracking deterioration on the surface of the archaeological site in sacrifice area of Sanxingdui Ruins site is taken as the research object. The long-term and in-situ monitoring of desiccation cracking development is conducted along the concurrent environmental data collection. The data analysis focuses on studying the evolution characteristics of desiccation cracking at the late stage of deterioration development, exploring the correlation between desiccation cracking development and the environment, and investigating the feasibility of the grouting method based on the temporal characteristics of desiccation cracking. The results indicate that the development of desiccation cracking includes both morphological evolution and dimensional changes. Specifically, some primary main fractures demonstrate continuous expansion slowly, while a minority of the secondary fractures intermittently extend or emerge. Overall, the width and depth of the primary main fractures gradually increase and become stable over time. Larger fractures exhibit more obvious size increments during development. The moisture content of the soil is the predominant environmental factor influencing the desiccation cracking. Change in the controlling factor results in different development stages of fractures at varying depths within the soil, leading to intersecting fractures that form fracture blocks, and under the stress adjustment, smaller fractures are suppressed from developing, resulting in spatial and temporal heterogeneity in change of fractures sizes. Practical experience has demonstrated the feasibility of relieving desiccation cracking deterioration through the grouting method at stable periods of desiccation cracking development.
  • 图  1   三星堆祭祀区考古遗址平面图

    Figure  1.   Archeological excavation site in sacrifice pits area Ruins site of Sanxingdui

    图  2   裂隙形态

    Figure  2.   Morphologies of fractures

    图  3   病害监测区和测点布置

    Figure  3.   Monitoring area and points for desiccation cracking

    图  4   裂隙图像处理流程

    Figure  4.   Process of fracture image processing

    图  5   裂隙宽度和深度测量方法示意图

    Figure  5.   Measuring method for width and depth of fracture

    图  6   测区3裂隙网络正射影像变化对比

    Figure  6.   Orthophoto comparison of fracture network change in measuring area 3

    图  7   测区3裂隙网络数字图像随时间变化

    Figure  7.   Digital image of development progress of fracture network in measuring area 3

    图  8   裂隙网络特征指标及其增加率随时间变化

    Figure  8.   Change of characteristic indexes of fracture network and their increase rates with times

    图  9   裂隙宽度和深度增加量随时间变化

    Figure  9.   Characteristics of increment of width and depth of fractures with time

    图  10   裂隙宽度和深度空间分布特点

    Figure  10.   Spatial distribution characteristics of width and depth of fractures

    图  11   裂隙宽度和深度之间关系

    Figure  11.   Correlation between width and depth of fractures

    图  12   赋存环境相关指标随时间变化

    Figure  12.   Characteristics of related environment factors with time

    图  13   主干裂隙尺寸与赋存环境Pearson相关系数

    Figure  13.   Pearson correlation coefficients of main fractures and different environment factors

    图  14   干缩裂隙尺寸变化的作用方式示意图

    Figure  14.   Variation in size of desiccation cracking at various depths

    图  15   第一次裂隙灌浆试验

    Figure  15.   First grouting experiment

    图  16   第二次裂隙灌浆试验

    Figure  16.   Second grouting experiment

  • [1] 王旭东. 潮湿环境土遗址保护理念探索与保护技术展望[J]. 敦煌研究, 2013(1): 1-6, 125. doi: 10.3969/j.issn.1000-4106.2013.01.001

    WANG Xudong. Exploration of conservation philosophy for earthen sites in humid environments and an outlook on future conservation technology[J]. Dunhuang Research, 2013(1): 1-6, 125. (in Chinese) doi: 10.3969/j.issn.1000-4106.2013.01.001

    [2]

    YAO X, ZHAO F. A comprehensive evaluation of the development degree and internal impact factors of desiccation cracking in the Sanxingdui archaeological site[J]. Heritage Science, 2023, 11(1): 93. doi: 10.1186/s40494-023-00934-3

    [3] 孙满利, 陈彦榕, 沈云霞. 土遗址病害研究新进展与展望[J]. 敦煌研究, 2022(2): 136-148.

    SUN Manli, CHEN Yanrong, SHEN Yunxia. New progress and prospects in research on earthen site deterioration[J]. Dunhuang Research, 2022(2): 136-148. (in Chinese)

    [4] 曲瑾, 马建林, 杨柏. 三星堆城墙干缩裂缝开裂与扩展机理[J]. 工程地质学报, 2020, 28(3): 610-618.

    QU Jin, MA Jianlin, YANG Bai. Crack initiation and propagation mechanism of earth wall at sanxingdui city[J]. Journal of Engineering Geology, 2020, 28(3): 610-618. (in Chinese)

    [5] 孙满利, 张景科. 文物保护学的理论探讨[J]. 西北大学学报(自然科学版), 2022, 52(2): 192-198.

    SUN Manli, ZHANG Jingke. Theoretical discussion on conservation of cultural heritage[J]. Journal of Northwest University (Natural Sciences), 2022, 52(2): 192-198. (in Chinese)

    [6] 唐朝生, 施斌, 崔玉军. 土体干缩裂隙的形成发育过程及机理[J]. 岩土工程学报, 2018, 40(8): 1415-1423. doi: 10.11779/CJGE201808006

    TANG Chaosheng, SHI Bin, CUI Yujun. Behaviors and mechanisms of desiccation cracking of soils[J]. Chinese Journal of Geotechnical Engineering, 2018, 40(8): 1415-1423. (in Chinese) doi: 10.11779/CJGE201808006

    [7] 赵贵刚, 黄英, 张浚枫, 等. 干湿循环作用下云南红土裂缝发展研究[J]. 水土保持学报, 2017, 31(2): 157-165.

    ZHAO Guigang, HUANG Ying, ZHANG Junfeng, et al. Investigation on the development of cracks of laterite of Yunnan under wetting-drying cycles[J]. Journal of Soil and Water Conservation, 2017, 31(2): 157-165. (in Chinese)

    [8] 王峰, 原俊红, 吴图那胜. 玄武岩纤维对黏土干缩开裂特征的影响[J]. 岩土工程学报, 2023, 45(增刊 1): 128-131. doi: 10.11779/CJGE2023S10003

    WANG Feng, YUAN Junhong, WU Tunasheng. Influences of basalt fibers on characteristics of shrinkage cracking of clay[J]. Chinese Journal of Geotechnical Engineering, 2023, 45(S1): 128-131. (in Chinese) doi: 10.11779/CJGE2023S10003

    [9]

    LI J H, ZHANG L M. Study of desiccation crack initiation and development at ground surface[J]. Engineering Geology, 2011, 123(4): 347-358. doi: 10.1016/j.enggeo.2011.09.015

    [10] 赵凡, 姚雪, 胡芮, 等. 三星堆祭祀区地表干缩开裂病害程度与土的性质的关联性[J/OL]. 土木与环境工程学报(中英文): 1-12. DOI: 10.11835/j.issn.2096-6717.2023.094.

    ZHAO Fan, YAO Xue, HU Rui, et al. Correlation between desiccation cracking and soil properties in Sanxingdui sacrifice archeology site[J/OL]. Journal of Civil and Environmental Engineering: 1-12. DOI: 10.11835/j.issn.2096-6717.2023.094. (in Chinese)

    [11] 唐朝生, 王德银, 施斌, 等. 土体干缩裂隙网络定量分析[J]. 岩土工程学报, 2013, 35(12): 2298-2305. http://cge.nhri.cn/article/id/15610

    TANG Chaosheng, WANG Deyin, SHI Bin, et al. Quantitative analysis of soil desiccation crack network[J]. Chinese Journal of Geotechnical Engineering, 2013, 35(12): 2298-2305. (in Chinese) http://cge.nhri.cn/article/id/15610

    [12]

    TANG C S, SHI B, LIU C, et al. Experimental characterization of shrinkage and desiccation cracking in thin clay layer[J]. Applied Clay Science, 2011, 52(1/2): 69-77.

    [13] 林銮, 唐朝生, 程青, 等. 基于数字图像相关技术的土体干缩开裂过程研究[J]. 岩土工程学报, 2019, 41(7): 1311-1318. doi: 10.11779/CJGE201907016

    LIN Luan, TANG Chaosheng, CHENG Qing, et al. Desiccation cracking bebavior of soils based on digital image correlation technique[J]. Chinese Journal of Geotechnical Engineering, 2019, 41(7): 1311-1318. (in Chinese) doi: 10.11779/CJGE201907016

    [14]

    DASOG G S, SHASHIDHARA G B. Dimension and volume of cracks in a vertisol under different crop covers[J]. Soil Science, 1993, 156(6): 424-428. doi: 10.1097/00010694-199312000-00007

    [15]

    XU J, DING T Y, WU D, et al. Extracting the 3D spatial structure of soil cracks in the North China Plain from paraffin casting and exploring the developmental patterns of vertical cross-sectional morphology of the cracks[J]. Geoderma, 2023, 436: 116554. doi: 10.1016/j.geoderma.2023.116554

    [16]

    SANCHEZ M, ATIQUE A, KIM S, et al. Exploring desiccation cracks in soils using a 2D profile laser device[J]. Acta Geotechnica, 2013, 8(6): 583-596. doi: 10.1007/s11440-013-0272-1

    [17]

    CHENG Q, TANG C S, ZHU C, et al. Drying-induced soil shrinkage and desiccation cracking monitoring with distributed optical fiber sensing technique[J]. Bulletin of Engineering Geology and the Environment, 2020, 79(8): 3959-3970. doi: 10.1007/s10064-020-01809-8

    [18]

    TANG C S, WANG D Y, ZHU C, et al. Characterizing drying-induced clayey soil desiccation cracking process using electrical resistivity method[J]. Applied Clay Science, 2018, 152: 101-112.

    [19] 潘斌, 曾召田, 莫红艳, 等. 胀缩性土收缩特性的温度效应试验[J]. 岩土工程学报, 2022, 44(增刊 1): 115-120. doi: 10.11779/CJGE2022S1021

    PAN Bin, ZENG Zhaotian, MO Hongyan, et al. Temperature effects on shrinkage properties of swell-shrink soils[J]. Chinese Journal of Geotechnical Engineering, 2022, 44(S1): 115-120. (in Chinese) doi: 10.11779/CJGE2022S1021

    [20] 唐朝生, 崔玉军, TANG A M, 等. 土体干燥过程中的体积收缩变形特征[J]. 岩土工程学报, 2011, 33(8): 1271-1279. http://cge.nhri.cn/article/id/14163

    TANG Chaosheng, CUI Yujun, TANG A M, et al. Volumetric shrinkage characteristics of soil during drying[J]. Chinese Journal of Geotechnical Engineering, 2011, 33(8): 1271-1279. (in Chinese) http://cge.nhri.cn/article/id/14163

    [21]

    BRAUDEAU E, COSTANTINI J M, BELLIER G, et al. New device and method for soil shrinkage curve measurement and characterization[J]. Soil Science Society of America Journal, 1999, 63(3): 525-535. doi: 10.2136/sssaj1999.03615995006300030015x

    [22]

    BOIVIN P, GARNIER P, TESSIER D. Relationship between clay content, clay type, and shrinkage properties of soil samples[J]. Soil Science Society of America Journal, 2004, 68(4): 1145-1153.

    [23] 杜长城, 祝艳波, 苗帅升, 等. 三趾马红土失水收缩裂缝演化规律研究[J]. 岩土力学, 2019, 40(8): 3019-3027, 3036.

    DU Changcheng, ZHU Yanbo, MIAO Shuaisheng, et al. The evolution of cracks in the dewatering shrinkage process of hipparion red soil[J]. Rock and Soil Mechanics, 2019, 40(8): 3019-3027, 3036. (in Chinese)

  • 期刊类型引用(24)

    1. 陈琼,崔德山,张扬景皓,朱俊峰. 一种新型环剪仪的研制及其应用. 地质科技通报. 2025(01): 205-215 . 百度学术
    2. 张卫雄,杨校辉,丁保艳,朱文杰,任永忠. 甘肃舟曲江顶崖滑坡堆积层剪切特性与强度参数分析. 中国地质灾害与防治学报. 2025(01): 65-72 . 百度学术
    3. Yang Xue,Fasheng Miao,Yiping Wu,Linwei Li,Daniel Dias,Yang Tang. Probabilistic Assessment of Constitutive Model Parameters:Insight from a Statistical Damage Constitutive Model and a Simple Critical State Hypoplastic Model. Journal of Earth Science. 2025(02): 685-699 . 必应学术
    4. 张兆雷. 滑带土力学性能及抗滑桩支护斜坡稳定分析. 黑龙江交通科技. 2025(04): 6-10 . 百度学术
    5. 周葆春,王江伟,单丽霞,李颖,郎梦婷,孔令伟. 不同膨胀潜势等级的膨胀土残余强度环剪试验研究. 岩土工程学报. 2024(06): 1325-1331 . 本站查看
    6. 鄢俊彪,孔令伟,李甜果,周振华. 膨胀土残余强度的变速率效应及工程启示. 岩土工程学报. 2024(07): 1445-1452 . 本站查看
    7. 方永柱. 库岸边坡滑坡带土体特性试验研究. 陕西水利. 2024(07): 196-198 . 百度学术
    8. 袁伟. 基于Midas对沿河滑坡的分析研究. 中国水运. 2024(08): 139-141 . 百度学术
    9. 袁伟. 基于Midas对沿河滑坡的分析研究. 中国水运. 2024(15): 139-141 . 百度学术
    10. 王家鑫,夏元友,王智德. 考虑滑面应变软化效应的边坡震后位移计算方法. 计算力学学报. 2024(06): 1029-1036 . 百度学术
    11. 杜毅,晏鄂川,蔡静森,高旭,柳万里. 折线型复合式滑坡渐进破坏稳定性状态的力学判别. 岩土工程学报. 2023(06): 1151-1161 . 本站查看
    12. 苗发盛,赵帆程,吴益平,孟佳佳. 基于渗透-环剪试验的三峡库区童家坪滑坡滑带土强度特性研究. 岩土工程学报. 2023(07): 1480-1489 . 本站查看
    13. 黄淙葆,代张音,高威挺,罗庆丽. 贵州公路旁边坡滑带土抗剪强度特性研究. 地质与资源. 2023(03): 366-374 . 百度学术
    14. 吴爽爽,胡新丽,孙少锐,魏继红. 间歇式滑坡变形力学机制与单体预警案例研究. 岩土力学. 2023(S1): 593-602 . 百度学术
    15. 夏婷,代张音,杨银凯,赵昆. 含水率对滑带土抗剪强度的影响. 矿业工程研究. 2023(04): 60-66 . 百度学术
    16. 赵帆程,苗发盛,吴益平,薛阳,孟佳佳. 不同环剪条件下三峡库区童家坪滑坡滑带土强度特性. 地质科技通报. 2022(02): 315-324 . 百度学术
    17. 周洪福,张卓婷,韦玉婷. 基于滑体自重效应的滑带土强度参数取值方法. 岩石力学与工程学报. 2022(05): 1045-1053 . 百度学术
    18. 唐雅婷,谭杰,李长冬,李炳辰,周文娟. 基于模型试验的动水驱动型顺层岩质滑坡启滑机制初探. 地质科技通报. 2022(06): 137-148 . 百度学术
    19. 李政洋,袁伟,蒙焕伟. 高洞滑坡基本特征及形成机制分析. 中国水运(下半月). 2022(12): 109-111 . 百度学术
    20. 付传林. 水库滑坡变形特征的数值分析. 水利科技与经济. 2022(12): 116-120 . 百度学术
    21. 李政洋,袁伟,蒙焕伟. 高洞滑坡基本特征及形成机制分析. 中国水运. 2022(24): 109-111 . 百度学术
    22. 任三绍,张永双,徐能雄,吴瑞安. 含砾滑带土残余强度与剪切面粗糙度的细观响应机制. 岩土工程学报. 2021(08): 1473-1482 . 本站查看
    23. 张晓奇,胡新丽,刘忠绪,刘畅,吴爽爽. 呷爬滑坡滑带土蠕变特性及其稳定性. 地质科技通报. 2020(06): 145-153 . 百度学术
    24. 张耀文,吴迪. 黏性土的残余强度及试验方法研究. 工程技术研究. 2019(24): 147-148+226 . 百度学术

    其他类型引用(4)

图(16)
计量
  • 文章访问数:  235
  • HTML全文浏览量:  31
  • PDF下载量:  57
  • 被引次数: 28
出版历程
  • 收稿日期:  2023-12-27
  • 网络出版日期:  2024-08-20
  • 刊出日期:  2025-04-30

目录

    /

    返回文章
    返回