非饱和土边坡三维地震稳定性分析

    姬羽菲, 邵帅, 邵生俊, 朱学亮, 严广艺

    姬羽菲, 邵帅, 邵生俊, 朱学亮, 严广艺. 非饱和土边坡三维地震稳定性分析[J]. 岩土工程学报, 2025, 47(3): 627-635. DOI: 10.11779/CJGE20231125
    引用本文: 姬羽菲, 邵帅, 邵生俊, 朱学亮, 严广艺. 非饱和土边坡三维地震稳定性分析[J]. 岩土工程学报, 2025, 47(3): 627-635. DOI: 10.11779/CJGE20231125
    JI Yufei, SHAO Shuai, SHAO Shengjun, ZHU Xueliang, YAN Guangyi. Three-dimensional seismic stability analysis of unsaturated soil slopes[J]. Chinese Journal of Geotechnical Engineering, 2025, 47(3): 627-635. DOI: 10.11779/CJGE20231125
    Citation: JI Yufei, SHAO Shuai, SHAO Shengjun, ZHU Xueliang, YAN Guangyi. Three-dimensional seismic stability analysis of unsaturated soil slopes[J]. Chinese Journal of Geotechnical Engineering, 2025, 47(3): 627-635. DOI: 10.11779/CJGE20231125

    非饱和土边坡三维地震稳定性分析  English Version

    基金项目: 

    国家自然科学基金项目 52108342

    陕西省自然科学基础研究计划-引汉济渭联合基金项目 2019JLP-21

    陕西省自然科学基础研究计划-引汉济渭联合基金项目 2021JLM-5 0

    西安理工大学博士启动金项目 107-451122001

    详细信息
      作者简介:

      姬羽菲(1997—),男,硕士,主要从事极限分析方面的研究工作。E-mail: 985251289@qq.com

      通讯作者:

      邵帅, E-mail: shaoshuai@xaut.edu.cn

    • 中图分类号: TU411

    Three-dimensional seismic stability analysis of unsaturated soil slopes

    • 摘要: 边坡在地震作用下极易发生失稳,并常常伴随着明显的三维特征。基于极限分析上限原理和一维稳定入渗模型,对非饱和土边坡三维稳定性进行了研究。提出一种新的三维水平切片法,有效考虑了非饱和土重度、地震加速度和表观黏聚力的非线性分布特征。地震惯性力采用考虑土体阻尼和共振的修正拟动力法(MPDM)表示。通过重度加大法推导出边坡安全系数的显式表达式。与已有研究成果进行对比验证,并进行了一系列参数研究。结果表明:当边坡受到与土体固有频率接近的地震波作用时,会发生共振现象,边坡安全系数迅速降低;在同一地震频率作用下, 安全系数随地震加速度系数的增大而减小;当B/H < 3时,三维效应明显,在边坡设计时应考虑三维效应;吸力的存在有助于提高边坡的稳定性。
      Abstract: Slopes are highly susceptible to collapse under seismic action and are often accompanied by distinct three-dimensional (3D) features. The 3D stability of unsaturated soil slopes is investigated based on the principle of limit analysis upper bound and the one-dimensional stable infiltration model. A new 3D horizontal slicing method is proposed, which effectively considers the nonlinear distribution characteristics of unsaturated soil gravity, seismic acceleration and apparent cohesion. The seismic inertia force is expressed by a modified pseudo-dynamics method (MPDM) considering soil damping and resonance. The explicit expression for the slope safety factor is derived by gravity increase method (GIM). Comparison and validation with the existing research results and a series of parameter studies were carried out. The results show that when the slope is subjected to seismic wave action close to the intrinsic frequency of the soil body, resonance phenomenon occurs and the slope safety coefficient decreases rapidly; under the action of the same seismic frequency, the safety coefficient decreases with the increase of seismic acceleration coefficient. When B/H < 3, the 3D effect is obvious, and the 3D effect should be taken into account in the design of the slope; the existence of suction contributes to maintaining slope stability.
    • 图  1   三维旋转失效机制

      Figure  1.   Three-dimensional rotational failure mechanism

      图  2   含平面插入块的三维破坏模型

      Figure  2.   3D damage model with planar inserts

      图  3   水平切片法示意图

      Figure  3.   Schematic diagram of horizontal slicing method

      图  4   不同归一化频率安全系数的变化趋势

      Figure  4.   Trend of safety coefficients for different normalized frequencies

      图  5   坡顶加速度振幅与坡底加速度振幅之比

      Figure  5.   Ratio of acceleration amplitude at the top of the slope to acceleration amplitude at the bottom of the slope

      图  6   不同地震加速度系数下安全系数的变化趋势

      Figure  6.   Trend of safety factor for different seismic acceleration coefficients

      图  7   不同宽高比下安全系数的变化趋势

      Figure  7.   Trend of safety coefficients with different aspect ratios

      图  8   不同归一化入渗率下土A毛细黏聚力和有效重度变化趋势

      Figure  8.   The variation trend of capillary cohesion and effective unit weight of soil A under different normalized infiltration rates

      图  9   不同归一化入渗率下安全系数的变化趋势

      Figure  9.   Trend of safety factor for different normalized infiltration rates

      表  1   本方法与文献[17]的对比结果

      Table  1   Comparison results of the present method with literature [17]

      案例 β/(°) φ/(°) B/H γH/c(a) Fs(b) 分层数m(c)
      200 300 400 500
      1 60 15 1.0 12.831 1.000 1.006 1.006 1.005 1.004
      2 75 15 0.8 11.074 1.000 1.003 1.003 1.003 1.002
      3 75 30 3.0 11.120 1.000 1.004 1.002 1.001 1.001
      4 90 30 1.0 10.503 1.000 0.998 0.998 0.998 0.997
      5 90 30 1.5 8.704 1.000 1.005 1.004 1.003 1.003
      注:(a):文献[17]中提供的临界高度;(b):与临界高度值相对应的理论安全系数;(c):本文计算的不同层数下无吸力的安全系数。
      下载: 导出CSV

      表  2   湿润条件下不同土壤参数

      Table  2   Different soil parameters under wetting conditions

      土壤类型 c'/
      kPa
      φ'/
      (°)
      Srw αw/
      kPa-1
      nw ksatw/
      (10-7m·s-1)
      A 8.8 24 0.303 0.13 1.52 0.039
      B 6.6 37 0.413 0.17 2.20 0.146
      注:数据来自于文献[18]。
      下载: 导出CSV
    • [1]

      MICHALOWSKI R L, DRESCHER A. Three-dimensional stability of slopes and excavations[J]. Géotechnique, 2009, 59(10): 839-850. doi: 10.1680/geot.8.P.136

      [2]

      QIN C, CHIAN S C. Kinematic analysis of seismic slope stability with a discretisation technique and pseudo-dynamic approach: a new perspective[J]. Géotechnique, 2018, 68(6): 492–503. doi: 10.1680/jgeot.16.P.200

      [3]

      CHEN W F. Limit Analysis and Soil Plasticity[M]. Amsterdam: Elsevier, 1975.

      [4]

      LU N, GODT J. Infinite slope stability under steady unsaturated seepage conditions[J]. Water Resources Research, 2008, 44(11): e2008wr006976. doi: 10.1029/2008WR006976

      [5]

      LI Z W, YANG X L. Stability of 3D slope under steady unsaturated flow condition[J]. Engineering Geology, 2018, 242: 150-159. doi: 10.1016/j.enggeo.2018.06.004

      [6]

      WANG L, HU W, SUN D A, et al. 3D stability of unsaturated soil slopes with tension cracks under steady infiltrations[J]. International Journal for Numerical and Analytical Methods in Geomechanics, 2019, 43(6): 1184-1206. doi: 10.1002/nag.2889

      [7]

      WANG L, SUN D A, CHEN B, et al. Three-dimensional seismic stability of unsaturated soil slopes using a semi- analytical method[J]. Computers and Geotechnics, 2019, 110: 296-307. doi: 10.1016/j.compgeo.2019.02.008

      [8]

      GAO Y F, ZHANG F, LEI G H, et al. Stability charts for 3D failures of homogeneous slopes[J]. Journal of Geotechnical and Geoenvironmental Engineering, 2013, 139(9): 1528-1538. doi: 10.1061/(ASCE)GT.1943-5606.0000866

      [9]

      STEEDMAN R S, ZENG X. The influence of phase on the calculation of pseudo-static earth pressure on a retaining wall[J]. Géotechnique, 1990, 40(1): 103-112. doi: 10.1680/geot.1990.40.1.103

      [10]

      BELLEZZA I. A new pseudo-dynamic approach for seismic active soil thrust[J]. Geotechnical and Geological Engineering, 2014, 32(2): 561-576. doi: 10.1007/s10706-014-9734-y

      [11]

      LU N, GODT J W, WU D T. A closed-form equation for effective stress in unsaturated soil[J]. Water Resources Research, 2010, 46(5): e2009wr008646. doi: 10.1029/2009WR008646

      [12]

      SUN D A, WANG L, LI L. Stability of unsaturated soil slopes with cracks under steady-infiltration conditions[J]. International Journal of Geomechanics, 2019, 19(6): 04019044-04019044. doi: 10.1061/(ASCE)GM.1943-5622.0001398

      [13]

      LU N, LIKOS W J. Unsaturated Soil Mechanics[M]. New York: John Wiley & Sons, 2004.

      [14]

      ZHANG F, GAO Y F, WU Y X, et al. Effects of vertical seismic acceleration on 3D slope stability[J]. Earthquake Engineering and Engineering Vibration, 2016, 15(3): 487-494. doi: 10.1007/s11803-016-0338-9

      [15]

      YANG X L, LI Z W. Comparison of factors of safety using a 3D failure mechanism with kinematic approach[J]. International Journal of Geomechanics, 2018, 18(9): 04018107. doi: 10.1061/(ASCE)GM.1943-5622.0001235

      [16] 朱学亮, 邵生俊, 沈晓钧, 等. 裂隙黄土边坡三维稳定性极限分析[J]. 岩土力学, 2022, 43(10): 2735-2743, 2756.

      ZHU Xueliang, SHAO Shengjun, SHEN Xiaojun, et al. Three-dimensional stability limit analysis of cracked loess slopes[J]. Rock and Soil Mechanics, 2022, 43(10): 2735-2743, 2756. (in Chinese)

      [17]

      GAO Y F, ZHANG F, LEI G H, et al. An extended limit analysis of three-dimensional slope stability[J]. Géotechnique, 2013, 63(6): 518-524. doi: 10.1680/geot.12.T.004

      [18]

      LU N, KAYA M, COLLINS B D, et al. Hysteresis of unsaturated hydromechanical properties of a silty soil[J]. Journal of Geotechnical and Geoenvironmental Engineering, 2013, 139(3): 507-510. doi: 10.1061/(ASCE)GT.1943-5606.0000786

      [19]

      ZHONG J H, YANG X L. Pseudo-dynamic stability of rock slope considering Hoek-Brown strength criterion[J]. Acta Geotechnica, 2022, 17(6): 2481-2494. doi: 10.1007/s11440-021-01425-0

      [20] 李雨浓, 刘畅, 王立伟. 地震效应下三维非均质土坡稳定性极限分析[J]. 岩土力学, 2022, 43(6): 1493-1502.

      LI Yunong, LIU Chang, WANG Liwei. Three-dimensional seismic stability of inhomogeneous soil slopes using limit analysis method[J]. Rock and Soil Mechanics, 2022, 43(6): 1493-1502. (in Chinese)

      [21] 王龙, 陈国兴, 胡伟, 等. 三维非饱和土边坡拟动力稳定性分析初探[J]. 岩土工程学报, 2023, 45(9): 1859-1867. doi: 10.11779/CJGE20220765

      WANG Long, CHEN Guoxing, HU Wei, et al. Three- dimensional seismic stability of unsaturated soil slopes using pseudo-dynamic approach[J]. Chinese Journal of Geotechnical Engineering, 2023, 45(9): 1859-1867. (in Chinese) doi: 10.11779/CJGE20220765

    图(9)  /  表(2)
    计量
    • 文章访问数:  0
    • HTML全文浏览量:  0
    • PDF下载量:  0
    • 被引次数: 0
    出版历程
    • 收稿日期:  2023-11-20
    • 网络出版日期:  2024-06-12
    • 刊出日期:  2025-02-28

    目录

      /

      返回文章
      返回