Seismic responses of underground structures based on centrifuge shaking table test in liquefiable site
-
摘要: 为研究场地液化对地下结构地震响应的影响,开展了可液化场地条件下的离心机振动台试验,得到液化场地地下结构地震响应规律,并通过Pushover分析方法确定场地不同液化程度下土体刚度的衰减程度。研究结论如下:在4种加载工况下,模型结构的侧墙及顶板总应变峰值响应完全处于弹性范围内,中柱应变在大震作用下略超过混凝土的弹性应变限值,损伤程度较低,模型结构表现出良好的抗震性能;四种加载工况下,可液化场地中结构层间位移较结构等高处场地层间位移衰减了63%~76%;由场地水平位移和土-结构体系位移衰减比来看,尽管饱和砂土层液化后会出现较大的水平位移,但场地液化后土-结构刚度比降低仍会避免结构出现较大的层间位移和严重破坏;在实际工程应用Pushover分析方法对液化场地地下结构进行简化分析时,可考虑最不利工况,将土体模量折减为初始模量的3%进行计算。Abstract: In order to study the effects of site liquefaction on the seismic responses of underground structures, the centrifuge shaking table tests under liquefiable site conditions are carried out. The seismic response laws of underground structures in liquefiable site are obtained. The attenuation degree of soil stiffness under different liquefaction degrees of the site is obtained by using the Pushover analysis method. The conclusions are drawn as follows: (1) The peak total strain responses of the sidewalls and plates of the model structures are within the elastic range under the four loading conditions. The strains of the center column just exceed the elastic strain limit of concrete under large earthquakes, with a low level of damage. The underground structures conforming to the existing codes exhibit good seismic performance. (2) The inter-story drifts of the structures in the liquefiable site are attenuated by 63%~76% compared with those in the site at the structural equivalent height under the four loading conditions. (3) From the horizontal displacement of the site and the displacement attenuation ratio of the soil-structure system, although the liquefaction of the saturated sandy soil layer will lead to a larger horizontal displacement of the site, the reduction of the soil-structure stiffness ratio caused by the liquefaction of the site will still avoid the structures from experiencing a larger inter-story drift and serious damage. (4) When applying the Pushover analysis method to simplify the analysis of underground structures in liquefiable sites, the most unfavorable conditions should be considered, and the soil modulus can be discounted to 3% of the initial modulus for calculation.
-
-
表 1 离心机试验相似比
Table 1 Scaling laws of centrifuge tests
物理量 量纲 模型/原型 密度 [M][L]-3 1 尺寸 [L] 1/55 渗透系数 [L][T]-2 55 动力时间 [T] 1/55 渗透时间 [T]2 1/552 水头 [L] 1/55 孔隙水压力 [M][L]-1[T]-2 1 频率 [T]-1 55 加速度 [L][T]-2 55 应力 [M][L]-1[T]-2 1 应变 — 1 表 2 高岭土的物理参数
Table 2 Basic physical parameters of kaolin
Gs SiO2/% Al2O3/% 液限/% 塑限/% 2.68 47~53 32~38 65.35 40.04 表 3 福建标准砂的物理参数
Table 3 Physical properties of model sand
Gs emax emin e D50/mm φ/(°) 2.645 0.961 0.615 0.78 0.16 39 表 4 数值模拟土体参数设置
Table 4 Soil parameters for numerical simulation
土层 质量
密度ρ/
(g·cm-3)参考剪切模量Gr/MPa 参考体积模量Br/MPa 黏聚力c/kPa 八面体剪应变γmax 摩擦角
/(°)参考围压p'r/kPa 压力相关系数d 屈服面数n 剪胀角ϕPT/(°) 剪缩参数C1 剪缩参数C3 剪胀参数D1 剪胀参数D3 孔隙比e 砂土 1.9 49 119 — 0.1 33.5 101 0.5 20 22.5 0.045 0.15 0.06 0.15 0.7 黏土 1.75 51/56 164/184 30 0.1 0 100 0 20 — — — — — — 表 5 钢筋混凝土本构参数
Table 5 Material parameters of reinforcement and concrete
本构模型 参数 取值 Steel02 抗拉强度fy 335 MPa 弹性模量E0 200 GPa 应变硬化率b 0.00001 ConcreteD 弹性模量E 13 GPa 抗压强度fc 16.3 MPa 峰值压应变εc 0.001915 抗拉强度ft 1.43 MPa 表 6 Pushover多工况土结体系位移衰减比分析
Table 6 Pushover multi-condition analysis of displacement attenuation ratio for soil-structure system
目标试验
加载工况Pushover初始模量折减
系数(折减后/折减前)/%土结刚度比F 结构层间位移峰值/m 场地层间位移峰值/m 土-结构体系位移衰减比/% Kobe-0.1g 100 3.03 0.00508 0.005616 9.54 50 1.515 0.00508 0.007199 29.43 25 0.7575 0.00508 0.012390 59.00 22 0.6666 0.00508 0.013715 62.96 21 0.6363 0.00508 0.013793 63.17 20 0.606 0.00508 0.013842 63.30 Kobe-0.32g 100 3.03 0.00951 0.010849 12.34 50 1.515 0.00951 0.013670 30.43 25 0.7575 0.00951 0.023476 59.49 20 0.606 0.00951 0.026184 63.68 11 0.3333 0.00951 0.034632 72.54 10 0.303 0.00951 0.035222 73.00 Kobe-0.52g 100 3.03 0.01272 0.014791 14.00 50 1.515 0.01272 0.018368 30.75 25 0.7575 0.01272 0.031532 59.66 10 0.303 0.01272 0.047445 73.19 5 0.1515 0.01272 0.049961 74.02 4 0.1212 0.01272 0.049417 74.26 3 0.0909 0.01272 0.049882 74.50 -
[1] IIDA H, HIROTO T, YOSHIDA N, et al. Damage to Daikai subway station[J]. Soils and Foundations, 1996, 36: 283-300. doi: 10.3208/sandf.36.Special_283
[2] WANG Z Z, GAO B, JIANG Y J, et al. Investigation and assessment on mountain tunnels and geotechnical damage after the Wenchuan earthquake[J]. Science in China Series E: Technological Sciences, 2009, 52(2): 546-558. doi: 10.1007/s11431-009-0054-z
[3] YAMAGUCHI A, MORI T, KAZAMA M, et al. Liquefaction in Tohoku district during the 2011 off the Pacific coast of Tohoku earthquake[J]. Soils and Foundations, 2012, 52(5): 811-829. doi: 10.1016/j.sandf.2012.11.005
[4] HASHASH Y M A, HOOK J J, SCHMIDT B, et al. Seismic design and analysis of underground structures[J]. Tunnelling and Underground Space Technology, 2001, 16(4): 247-293. doi: 10.1016/S0886-7798(01)00051-7
[5] SUN Q Q, DIAS D, RIBEIRO E SOUSA L. Impact of an underlying soft soil layer on tunnel lining in seismic conditions[J]. Tunnelling and Underground Space Technology, 2019, 90: 293-308. doi: 10.1016/j.tust.2019.05.011
[6] 唐军平, 李建强, 孙双祥, 等. 佛山市城市轨道交通二号线南庄站砂土液化分析及处理措施[J]. 路基工程, 2017(1): 189-193, 212. TANG Junping, LI Jianqiang, SUN Shuangxiang, et al. Analysis of sand liquefaction at Nanzhuang Station of Foshan urban rail transit line 2 and treatment measure[J]. Subgrade Engineering, 2017(1): 189-193, 212. (in Chinese)
[7] MENG F Y, CHEN R P, KANG X. Effects of tunneling-induced soil disturbance on the post-construction settlement in structured soft soils[J]. Tunnelling and Underground Space Technology, 2018, 80: 53-63. doi: 10.1016/j.tust.2018.06.007
[8] ZHENG G, FAN Q, ZHANG T Q, et al. Multistage regulation strategy as a tool to control the vertical displacement of railway tracks placed over the building site of two overlapped shield tunnels[J]. Tunnelling and Underground Space Technology, 2019, 83: 282-290. doi: 10.1016/j.tust.2018.09.040
[9] AN J H, TAO L J, JIANG L Z, et al. A shaking table-based experimental study of seismic response of shield-enlarge-dig type's underground subway station in liquefiable ground[J]. Soil Dynamics and Earthquake Engineering, 2021, 147: 106621. doi: 10.1016/j.soildyn.2021.106621
[10] 凌道盛, 郭恒, 蔡武军, 等. 地铁车站地震破坏离心机振动台模型试验研究[J]. 浙江大学学报(工学版), 2012, 46(12): 2201-2209. doi: 10.3785/j.issn.1008-973X.2012.12.010 LING Daosheng, GUO Heng, CAI Wujun, et al. Research on seismic damage of metro station with centrifuge shaking table model test[J]. Journal of Zhejiang University (Engineering Science), 2012, 46(12): 2201-2209. (in Chinese) doi: 10.3785/j.issn.1008-973X.2012.12.010
[11] CHEN G X, CHEN S, QI C Z, et al. Shaking table tests on a three-arch type subway station structure in a liquefiable soil[J]. Bulletin of Earthquake Engineering, 2015, 13(6): 1675-1701. doi: 10.1007/s10518-014-9675-0
[12] CHEN S, TANG B Z, ZHUANG H Y, et al. Experimental investigation of the seismic response of shallow-buried subway station in liquefied soil[J]. Soil Dynamics and Earthquake Engineering, 2020, 136: 106153. doi: 10.1016/j.soildyn.2020.106153
[13] TANG B Z, YU B Y, ZHUANG H Y, et al. Seismic behavior of irregular underground structures in saturated sand[J]. Soil Dynamics and Earthquake Engineering, 2024, 179: 108478. doi: 10.1016/j.soildyn.2024.108478
[14] 王刚, 张建民, 魏星. 可液化土层中地下车站的地震反应分析[J]. 岩土工程学报, 2011, 33(10): 1623-1627. http://cge.nhri.cn/article/id/14212 WANG Gang, ZHANG Jianmin, WEI Xing. Seismic response analysis of a subway station in liquefiable soil[J]. Chinese Journal of Geotechnical Engineering, 2011, 33(10): 1623-1627. (in Chinese) http://cge.nhri.cn/article/id/14212
[15] WU Q, DING X M, ZHANG Y L, et al. Experimental and numerical study on dynamic response of underground structure in coral sand under earthquakes[J]. Journal of Earthquake Engineering, 2024, 28(1): 62-84. doi: 10.1080/13632469.2023.2173491
[16] CHEN S, TANG B Z, ZHAO K, et al. Seismic response of irregular underground structures under adverse soil conditions using shaking table tests[J]. Tunnelling and Underground Space Technology, 2020, 95: 103145. doi: 10.1016/j.tust.2019.103145
[17] 邹炎, 景立平, 李永强. 隧道穿过土层分界面振动台模型试验研究[J]. 岩石力学与工程学报, 2014, 33(增刊1): 3340-3348. ZOU Yan, JING Liping, LI Yongqiang. Study of shaking table model test of tunnel through soil interface[J]. Chinese Journal of Rock Mechanics and Engineering, 2014, 33(S1): 3340-3348. (in Chinese)
[18] 刘春晓, 陶连金, 边金, 等. 可液化土层对地下结构地震影响的振动台试验[J]. 浙江大学学报(工学版), 2021, 55(7): 1327-1338. LIU Chunxiao, TAO Lianjin, BIAN Jin, et al. Shaking table test of seismic effect of liquefiable soil layer on underground structure[J]. Journal of Zhejiang University (Engineering Science), 2021, 55(7): 1327-1338. (in Chinese)
[19] CHEN R R, TAIEBAT M, WANG R, et al. Effects of layered liquefiable deposits on the seismic response of an underground structure[J]. Soil Dynamics and Earthquake Engineering, 2018, 113: 124-135. doi: 10.1016/j.soildyn.2018.05.037
[20] ZHU T, WANG R, ZHANG J M. Evaluation of various seismic response analysis methods for underground structures in saturated sand[J]. Tunnelling and Underground Space Technology, 2021, 110: 103803. doi: 10.1016/j.tust.2020.103803
[21] 城市轨道交通结构抗震设计规范: GB 50909—2014[S]. 北京: 中国标准出版社, 2014. Code for Seismic Design of Urban Rail Transit Structures: GB 50909—2014[S]. Beijing: Standards Press of China, 2014. (in Chinese)
[22] 张梓鸿, 许成顺, 闫冠宇, 等. 液化夹层场地地铁车站结构离心机振动台试验方案设计[J]. 岩土工程学报, 2022, 44(5): 879-888. doi: 10.11779/CJGE202205011 ZHANG Zihong, XU Chengshun, YAN Guanyu, et al. Experimental design for dynamic centrifuge tests on a subway station structure in liquefied interlayer site[J]. Chinese Journal of Geotechnical Engineering, 2022, 44(5): 879-888. (in Chinese) doi: 10.11779/CJGE202205011
[23] KUTTER B L. Dynamic centrifuge modeling of geotechnical structures [J]. Transportation Research Record, 1992: 24-30.
[24] BANERJEES. Centrifuge and Numerical Modelling of Soft Clay-pile-raft Foundations Subjected to Seismic Shaking[D]. Singapore: National University of Singapore, 2009.
[25] MONTOYA-NOGUERA S, LOPEZ-CABALLERO F. Effect of coupling excess pore pressure and deformation on nonlinear seismic soil response[J]. Acta Geotechnica, 2016, 11(1): 191-207. doi: 10.1007/s11440-014-0355-7
[26] DU X L, JIANG J W, EL NAGGAR M H, et al. Interstory drift ratio associated with performance objectives for shallow-buried multistory and span subway stations in inhomogeneous soil profiles[J]. Earthquake Engineering & Structural Dynamics, 2021, 50(2): 655-672.
-
其他相关附件