减水剂对流态固化淤泥流动性的影响试验研究

    王文翀, 黄英豪, 王硕, 彭广益, 王淮

    王文翀, 黄英豪, 王硕, 彭广益, 王淮. 减水剂对流态固化淤泥流动性的影响试验研究[J]. 岩土工程学报, 2024, 46(8): 1605-1612. DOI: 10.11779/CJGE20230828
    引用本文: 王文翀, 黄英豪, 王硕, 彭广益, 王淮. 减水剂对流态固化淤泥流动性的影响试验研究[J]. 岩土工程学报, 2024, 46(8): 1605-1612. DOI: 10.11779/CJGE20230828
    WANG Wenchong, HUANG Yinghao, WANG Shuo, PENG Guangyi, WANG Huai. Experimental study on influence of plasticizer on fluidity of convection- solidified silt[J]. Chinese Journal of Geotechnical Engineering, 2024, 46(8): 1605-1612. DOI: 10.11779/CJGE20230828
    Citation: WANG Wenchong, HUANG Yinghao, WANG Shuo, PENG Guangyi, WANG Huai. Experimental study on influence of plasticizer on fluidity of convection- solidified silt[J]. Chinese Journal of Geotechnical Engineering, 2024, 46(8): 1605-1612. DOI: 10.11779/CJGE20230828

    减水剂对流态固化淤泥流动性的影响试验研究  English Version

    基金项目: 

    苏州市水运工程建设指挥部科研专项项目 CHSX-FW-CHSXYJ1-2023-18

    中央级公益性科研院所基本科研业务费项目 Y322002

    详细信息
      作者简介:

      王文翀(1997—),男,硕士研究生,主要从事疏浚淤泥流动固化方面的研究工作。E-mail: wchongwang@126.com

      通讯作者:

      黄英豪, E-mail: yhhuang@nhri.cn

    • 中图分类号: TU44

    Experimental study on influence of plasticizer on fluidity of convection- solidified silt

    • 摘要: 相比传统回填材料,可控性能流态固化回填料(Performance-controlled fluidized solidified backfill material,PCFS材料)具有高流态、自密实等特点,能够有效避免因压实不充分导致的工程问题,特别适用于狭窄区域的回填。以淤泥为原材料,水泥为固化材料制备强度、流动性和凝结时间等性能可控的PCFS材料,通过流动度试验探讨了不同初始条件对PCFS的流动性的影响规律,为提升PCFS的流动性能,选择了木钙、萘系、聚羧酸3类减水剂,对3类减水剂提升PCFS流动性的效果进行对比分析。试验结果表明:PCFS的流动度和初始含水率之间存在线性正相关关系;水泥的掺入会导致PCFS流动度明显降低,且主要发生在水泥掺量≤2%时。3类减水剂对PCFS流动度的提升幅度从大到小依次为聚羧酸>萘系>木钙,其中聚羧酸和木钙的掺入会引入气泡,萘系和木钙的“饱和掺量”分别为2%,4%。水泥掺量不同又会使得3类减水剂提升流动度的效果产生明显差异,水泥掺量的增大使得木钙的提升效果降低,对于聚羧酸的影响则较小,而对于萘系则表现出了“反常效应”。最后讨论了“饱和掺量”和“反常效应”的成因,并提出了初始含水率2wL、5%水泥掺量条件下PCFS的流动度表达公式。
      Abstract: Compared with the traditional backfill materials, the performance-controlled fluidized solidified (PCFS) backfill materials are characterized by high flow state and self-compaction, which can effectively avoid engineering problems caused by insufficient compaction, especially for backfill in narrow areas. Using silt as raw materials and cement as curing materials, the PCFS materials with controllable properties such as strength, fluidity and setting time are prepared. The influences of different initial conditions on the fluidity of the PCFS materials are discussed through the flow tests. In order to improve the flow performance of the PCFS materials, three water reducing agents, calcium lignosulfonate, naphthalene superplasticizer and polycarboxylate superplasticizer, are selected, and the effects of three water reducing agents on improving the flow of the PCFS materials are compared and analyzed. The results show that there is a positive linear correlation between the fluidity of the PCFS materials and the initial water content. The addition of cement will lead to a significant decrease in the fluidity of the PCFS materials, which mainly occurs when the cement content is less than 2%. The increasing range of fluidity of the PCFS materials by the three water-reducing agents is from large to small in the order of polycarboxylate superplasticizer > naphthalene superplasticizer > calcium lignosulfonate, wherein the incorporation of polycarboxylate superplasticizer and calcium lignosulfonate will introduce bubbles, and the "saturated content" of naphthalene superplasticizer and calcium lignosulfonate is 2% and 4%, respectively. Different cement contents will make the three kinds of water-reducing agent to improve the flow effects have a significant difference. The increase of cement content reduces the effects of the calcium lignosulfonate, has samll effects on the polycarboxylate superplasticizer, and shows " anomalous effects" on the naphthalene superplasticizer. Finally, the causes of "saturation content" and "anomalous effects" are discussed, and the expression formula for fluidity of the PCFS materials under the initial water content of 2wL and cement content of 5% is proposed.
    • 图  1   淤泥的颗粒粒径分布曲线

      Figure  1.   Grain-size distribution curve of silt

      图  2   试验仪器

      Figure  2.   Test instruments

      图  3   不同含水率下PCFS流动度的试验照片

      Figure  3.   Test photos of fluidity of PCFS under different water contents

      图  4   原泥和PCFS流动度与初始含水率的关系

      Figure  4.   Relationship between fluidity of silt and PCFS and initial water content

      图  5   不同水泥掺量下PCFS流动性的试验照片

      Figure  5.   Test photos of fluidity of PCFS under different cement content

      图  6   PCFS流动度与水泥掺量的关系

      Figure  6.   Relationship between fluidity of PCFS and cement content

      图  7   参数D0的变化曲线

      Figure  7.   Change curve of parameter D0

      图  8   木钙减水剂对PCFS流动度的影响

      Figure  8.   Influences of calcium lignosulfonate on fluidity of PCFS

      图  9   萘系减水剂对PCFS流动度的影响

      Figure  9.   Influences of naphthalene superplasticizer on fluidity of PCFS

      图  10   聚羧酸减水剂对PCFS流动度的影响

      Figure  10.   Influences of polycarboxylate superplasticizer on fluidity of PCFS

      图  11   PCFS试验过程照片(掺入聚羧酸)

      Figure  11.   Photos of test process of PCFS (adding polycarboxylate superplasticizer)

      图  12   三类减水剂对PCFS流动度的提升效果

      Figure  12.   Improvement effects of three types of water-reducing agents on fluidity of PCFS

      图  13   2wL、5%水泥初始条件下的拟合曲线

      Figure  13.   Fitting curves under initial water content of 2wL and cement content of 5%

      表  1   试验用淤泥主要物理性质指标

      Table  1   Main physical property indexes of test silt

      w/
      %
      Gs 黏粒含量/% wL/
      %
      wP/
      %
      IP/
      %
      有机质含量/%
      80.5 2.72 27.9 56.2 20.7 35.5 0.75
      下载: 导出CSV

      表  2   淤泥初始含水率和水泥掺量设计

      Table  2   Design of initial water content of silt and cement content

      初始含水率 水泥掺量/%
      2.0wL 0 1 2 5 10 15
      2.5wL 0 1 2 5 10 15
      3.0wL 0 1 2 5 10 15
      4.0wL 0 1 2 5 10 15
      注:水泥掺量为占淤泥总质量的百分数。
      下载: 导出CSV

      表  3   减水剂种类及其掺量设计

      Table  3   Types and dosage design of water reducing agents

      减水剂名称 掺量设置/%
      木钙减水剂 0,1,2,3,4
      萘系减水剂 0,0.5,1,1.5,2,3
      聚羧酸减水剂 0,0.2,0.4,0.5,0.6,0.8,1
      注:减水剂掺量为占淤泥总质量的百分数。
      下载: 导出CSV

      表  4   PCFS流动度-含水率的线性关系拟合结果

      Table  4   Fitting results of linear relationship between fluidity and water content of PCFS

      水泥掺量/% 式(1)
      a b R2
      1 138.5 -152.8 0.999
      2 138.5 -186.2 0.993
      5 138.5 -194.0 0.992
      10 138.5 -198.5 0.993
      15 138.5 -199.3 0.993
      下载: 导出CSV

      表  5   PCFS流动度与水泥掺量关系拟合结果

      Table  5   Fitting results of relationship between fluidity of PCFS and cement content

      初始含水率 式(2)
      D0 A R2
      2.0wL 97.7 128.0 0.997
      2.5wL 149.0 188.6 0.999
      3.0wL 215.7 189.1 0.998
      4.0wL 371.5 111.0 0.997
      下载: 导出CSV
    • [1] 黄英豪, 戴济群, 徐锴. 新拌固化淤泥的流动性和黏滞性试验研究[J]. 岩土工程学报, 2022, 44(2): 235-244. doi: 10.11779/CJGE202202004

      HUANG Yinghao, DAI Jiqun, XU Kai. Experimental study on fluidity and viscosity of newly mixed solidified sludge[J]. Chinese Journal Geotechnical Engineering, 2022, 44(2): 235-244. (in Chinese) doi: 10.11779/CJGE202202004

      [2] 黄英豪, 朱伟, 董婵, 等. 固化淤泥结构性力学特性的试验研究[J]. 水利学报, 2014, 45(增刊2): 130-136. https://www.cnki.com.cn/Article/CJFDTOTAL-SLXB2014S2021.htm

      HUANG Yinghao, ZHU Wei, DONG Chan, et al. Experimental study on structural mechanical properties of solidified silt[J]. Journal of Hydraulic Engineering, 2014, 45(S2): 130-136. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-SLXB2014S2021.htm

      [3] 黄英豪, 董婵, 关云飞, 等. 击实对固化淤泥物理力学性质的影响[J]. 岩土工程学报, 2012, 34(9): 1728-1733. http://cge.nhri.cn/cn/article/id/14703

      HUANG Yinghao, DONG Chan, GUAN Yunfei, et al. Effect of compaction on physical and mechanical properties of solidified silt[J]. Chinese Journal of Geotechnical Engineering, 2012, 34(9): 1728-1733. (in Chinese) http://cge.nhri.cn/cn/article/id/14703

      [4]

      DEVARAJ V, MANGOTTIRI V, BALU S. Sustainable utilization of industrial wastes in controlled low-strength materials: a review[J]. Environmental Science and Pollution Research, 2023, 30(6): 14008-14028.

      [5]

      ALIZADEH V. Influence of cementing paste volume on properties of controlled low strength materials[J]. Journal of Materials in Civil Engineering, 2018, 30(3): 04017305. doi: 10.1061/(ASCE)MT.1943-5533.0002200

      [6]

      LING T C, KALIYAVARADHAN S K, POON C S. Global perspective on application of controlled low-strength material (CLSM) for trench backfilling: an overview[J]. Construction and Building Materials, 2018, 158: 535-548. doi: 10.1016/j.conbuildmat.2017.10.050

      [7]

      LACHEMI M, HOSSAIN K M A, SHEHATA M, et al. Controlled low strength materials incorporating cement kiln dust from various sources[J]. Cement and Concrete Composites, 2008, 30(5): 381-392. doi: 10.1016/j.cemconcomp.2007.12.002

      [8]

      LEE K H, KIM J D. Performance evaluation of modified marine dredged soil and recycled in-situ soil as controlled low strength materials for underground pipe[J]. KSCE Journal of Civil Engineering, 2013, 17(4): 674-680. doi: 10.1007/s12205-013-0178-3

      [9]

      MNEINA A, SOLIMAN A M, AHMED A, et al. Engineering properties of controlled low-strength materials containing treated oil sand waste[J]. Construction and Building Materials, 2018, 159: 277-285. doi: 10.1016/j.conbuildmat.2017.10.093

      [10] 谭正日, 谭洪波, 吕周岭, 等. 不同类型减水剂对渣土基高流态回填材料性能的影响[J]. 硅酸盐通报, 2022, 41(9): 3227-3233. https://www.cnki.com.cn/Article/CJFDTOTAL-GSYT202209029.htm

      TAN Zhengri, TAN Hongbo, LÜ Zhouling, et al. Effect of plasticizer type on properties of construction spoil based high-fluid backfill materials[J]. Bulletin of the Chinese Ceramic Society, 2022, 41(9): 3227-3233. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-GSYT202209029.htm

      [11]

      LEE K J, KIM S K, LEE K H. Flowable backfill materials from bottom ash for underground pipeline[J]. Materials, 2014, 7(5): 3337-3352. doi: 10.3390/ma7053337

      [12]

      KIM Y S, DO T M, KIM H K, et al. Utilization of excavated soil in coal ash-based controlled low strength material (CLSM)[J]. Construction and Building Materials, 2016, 124: 598-605. doi: 10.1016/j.conbuildmat.2016.07.053

      [13]

      HWANG C L, CHIANG C H, HUYNH T P, et al. Properties of alkali-activated controlled low-strength material produced with waste water treatment sludge, fly ash, and slag[J]. Construction and Building Materials, 2017, 135: 459-471. doi: 10.1016/j.conbuildmat.2017.01.014

      [14] 丁建文, 刘铁平, 曹玉鹏, 等. 高含水率疏浚淤泥固化土的抗压试验与强度预测[J]. 岩土工程学报, 2013, 35(增刊2): 55-60. http://cge.nhri.cn/cn/article/id/15357

      DING Jianwen, LIU Tieping, CAO Yupeng, et al. Compressive test and strength prediction of soil solidified by dredged silt with high moisture content[J]. Chinese Journal of Geotechnical Engineering, 2013, 35(S2): 55-60. (in Chinese) http://cge.nhri.cn/cn/article/id/15357

      [15] 邱学青, 杨东杰, 吴湘伟, 等. 不同分子量木素磺酸钙减水剂的性能研究[J]. 混凝土与水泥制品, 1999(3): 7-10. https://www.cnki.com.cn/Article/CJFDTOTAL-HNTW903.001.htm

      QIU Xueqing, YANG Dongjie, WU Xiangwei, et al. Study on properties of calcium sulfonate water reducing agents with different molecular weight[J]. Concrete and Cement Products, 1999(3): 7-10. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-HNTW903.001.htm

      [16] 陈科, 杨长辉, 于泽东, 等. 不同减水剂及其复掺对碱矿渣水泥性能的影响[J]. 土木建筑与环境工程, 2012, 34(1): 124-129. https://www.cnki.com.cn/Article/CJFDTOTAL-JIAN201201024.htm

      CHEN Ke, YANG Changhui, YU Zedong, et al. Effects of different water reducing agents and their mixtures on properties of alkali slag cement[J]. Civil, Architecture and Environmental Engineering, 2012, 34(1): 124-129. (in Chinese) (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-JIAN201201024.htm

      [17] 胡红梅, 马保国, 何柳. 萘系高效减水剂的优化合成与改性[J]. 武汉理工大学学报, 2005(9): 38-41. https://www.cnki.com.cn/Article/CJFDTOTAL-WHGY200509012.htm

      HU Hongmei, MA Baoguo, HE Liu. Optimal synthesis and modification of naphthalene superplasticizers[J]. Journal of Wuhan University of Technology, 2005(9): 38-41. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-WHGY200509012.htm

      [18] 魏金, 丁向群, 沈洁, 等. 聚羧酸系高效减水剂的制备及其性能研究[J]. 硅酸盐通报, 2012, 31(1): 42-45. https://www.cnki.com.cn/Article/CJFDTOTAL-GSYT201201010.htm

      WEI Jin, DING Xiangqun, SHEN Jie, et al. Research on synthesis and properties of polycarboxylic superplasticizer[J]. Bulletin of the Chinese Ceramic Society, 2012, 31(1): 42-45. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-GSYT201201010.htm

      [19]

      JOLICOEUR C, SIMARD M A. Chemical admixture-cement interactions: Phenomenology and physico-chemical concepts[J]. Cement and Concrete Composites, 1998, 20(2-3): 87-101. doi: 10.1016/S0958-9465(97)00062-0

      [20] 刘经强, 冯竟竟, 李涛, 等. 混凝土外加剂实用技术手册[M]. 北京: 化学工业出版社, 2019.10: 45-46.

      LIU Jingqiang, FENG Jingjing, LI Tao, et al. Practical Technical Manual of Concrete Admixture[M]. Beijing: Chemical Industry Press, 2019.10: 45-46. (in Chinese)

      [21] 马保国, 杨虎, 谭洪波, 等. 水泥和黏土矿物对不同减水剂的吸附特性[J]. 硅酸盐学报, 2013, 41(3): 328-333. https://www.cnki.com.cn/Article/CJFDTOTAL-GXYB201303013.htm

      MA Baoguo, YANG Hu, TAN Hongbo, et al. Adsorption characteristics of different superplasticizers on cement and clay minerals[J]. Journal of the Chinese Ceramic Society, 2013, 41(3): 328-333. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-GXYB201303013.htm

    图(13)  /  表(5)
    计量
    • 文章访问数:  338
    • HTML全文浏览量:  51
    • PDF下载量:  68
    • 被引次数: 0
    出版历程
    • 收稿日期:  2023-08-27
    • 网络出版日期:  2023-12-19
    • 刊出日期:  2024-07-31

    目录

      /

      返回文章
      返回