• 全国中文核心期刊
  • 中国科技核心期刊
  • 美国工程索引(EI)收录期刊
  • Scopus数据库收录期刊

基于核磁共振技术的土体冻结特征曲线试验研究

应赛, 夏晓舟, 文桃, 周凤玺, 曹亚鹏, 李国玉, 章青

应赛, 夏晓舟, 文桃, 周凤玺, 曹亚鹏, 李国玉, 章青. 基于核磁共振技术的土体冻结特征曲线试验研究[J]. 岩土工程学报, 2024, 46(7): 1437-1444. DOI: 10.11779/CJGE20230301
引用本文: 应赛, 夏晓舟, 文桃, 周凤玺, 曹亚鹏, 李国玉, 章青. 基于核磁共振技术的土体冻结特征曲线试验研究[J]. 岩土工程学报, 2024, 46(7): 1437-1444. DOI: 10.11779/CJGE20230301
YING Sai, XIA Xiaozhou, WEN Tao, ZHOU Fengxi, CAO Yapeng, LI Guoyu, ZHANG Qing. Experimental study on freezing characteristic curve of soils based on nuclear magnetic resonance technology[J]. Chinese Journal of Geotechnical Engineering, 2024, 46(7): 1437-1444. DOI: 10.11779/CJGE20230301
Citation: YING Sai, XIA Xiaozhou, WEN Tao, ZHOU Fengxi, CAO Yapeng, LI Guoyu, ZHANG Qing. Experimental study on freezing characteristic curve of soils based on nuclear magnetic resonance technology[J]. Chinese Journal of Geotechnical Engineering, 2024, 46(7): 1437-1444. DOI: 10.11779/CJGE20230301

基于核磁共振技术的土体冻结特征曲线试验研究  English Version

基金项目: 

国家自然科学基金项目 12362032

国家自然科学基金项目 11932006

重庆市教委科技项目 KJQN202101447

重庆市教委科技项目 KJQN202201426

重庆市教委科技项目 KJQN202301401

甘肃省重点研发计划项目 23YFFA0063

甘肃省自然科学基金项目 20JR10RA472

详细信息
    作者简介:

    应赛(1989—),男,博士,讲师,主要从事岩土工程方面的教学和科研工作。E-mail:yingsai35910@163.com

    通讯作者:

    章青, E-mail: lxzhangqing@hhu.edu.cn

  • 中图分类号: TU445

Experimental study on freezing characteristic curve of soils based on nuclear magnetic resonance technology

  • 摘要: 冻结特征曲线描述了土中未冻水含量随温度变化的规律,给出适用不同土质的冻结特征曲线计算模型具有重要的工程价值。利用核磁共振技术对6种土体的冻结特征曲线进行了测试,给出了描述土体冻结特征曲线的Michalowski模型参数的确定方法,分析了初始含水率和土体性质对冻结特征曲线的影响,利用Michalowski模型参数的特征对模型进行了改进。研究表明,冻结特征曲线与初始含水率无关,冻结过程中不同初始含水率土体的冻结特征曲线相同。在不考虑温度影响时,模型参数wa近似等于土中最大结合水含量,可以作为分析和评价黏性土特性的重要指标参数。改进后的单参数Michalowski模型可实现对未冻水含量的良好预测,降低了模型的复杂性,提升了模型的实用价值,但模型的适用范围,有待验证。
    Abstract: The freezing characteristic curve describes the variation of unfrozen water content with temperature in soils, and it is of engineering value to provide a model for calculating freezing characteristic curves suitable for different soil types. The freezing characteristic curves of six kinds of soils are tested by using the nuclear magnetic resonance technology, and a method for determining parameters of Michalowski model describing the freezing characteristic curves of soils is given. The influences of the initial water content and soil properties on the freezing characteristic curve are analyzed, and the model is improved by using the characteristics of Michalowski model parameters. The study shows that the freezing characteristic curve is independent of the initial water content, and that of the soils with different initial water contents is the same during the freezing process. Without considering the influences of temperature, the model parameter wa is approximately equal to the maximum of bound water content in the soils, which can be used as an important index parameter to analyze and evaluate the characteristics of clay. The practical value is improved by the single-parameter Michalowski model as it performs well in predicting unfrozen water content with less model complexity, but the applicability of the model needs to be verified.
  • 图  1   Michalowski模型冻结特征曲线

    Figure  1.   Freezing characteristic curve of Michalowski model

    图  2   土体粒度分布曲线

    Figure  2.   Grain-size distribution curves of soil

    图  3   土体XRD衍射谱图

    Figure  3.   Spectra of XRD diffraction of soils

    图  4   不同初始含水率样品降温过程中的未冻结含水率变化曲线

    Figure  4.   Change curves of water content of samples with different initial water contents during cooling process

    图  5   未冻水含量wu与温度(Tm-T)的幂律关系

    Figure  5.   Power law relationship between unfrozen water content wu and temperature (Tm-T)

    图  6   三参数Michalowski模型的冻结特征曲线

    Figure  6.   Freezing characteristic curves of three-parameter Michalowski model

    图  7   模型参数与蒙脱石掺量关系曲线

    Figure  7.   Relationship curves between model parameters and montmorillonite content

    图  8   模型参数wa与界限含水率指标关系曲线

    Figure  8.   Relationship curves between model parameter wa and Atterberg limits

    图  9   模型参数关系曲线

    Figure  9.   Relationship curve between model parameters

    图  10   单参数Michalowski模型冻结特征曲线

    Figure  10.   Freezing characteristic curves of single-parameter Michalowski model

    图  11   利用液限计算得到的冻结特征曲线

    Figure  11.   Freezing characteristic curves calculated by liquid limit

    表  1   土的物理性质指标

    Table  1   Physical properties of soils

    土样编号 蒙脱石掺量S/% 土颗粒相对密度 塑限wP/% 液限wL/% 塑性指数IP
    #1 0 2.71 19.2 28.3 9
    #2 20 26.1 39.6 14
    #3 40 34.6 53.3 19
    #4 60 41.3 73.4 32
    #5 80 51.8 89.8 38
    #6 100 2.45 62.2 104.5 42
    下载: 导出CSV

    表  2   拟合曲线参数

    Table  2   Parameters of fitting curve

    土体编号 斜率k 截距m 相关系数R2
    #1 -0.38 0.56 0.99
    #2 -0.28 1.01 0.97
    #3 -0.25 1.22 0.98
    #4 -0.26 1.38 0.95
    #5 -0.23 1.47 0.95
    #6 -0.24 1.58 0.98
    下载: 导出CSV

    表  3   Michalowski模型参数表

    Table  3   Parameters of Michalowski model

    土体编号 wa/% wb/% a
    #1 3.58 0.99 0.18
    #2 10.09 3.99 0.15
    #3 16.32 7.19 0.15
    #4 23.75 9.53 0.13
    #5 29.58 13.48 0.13
    #6 37.38 15.94 0.12
    下载: 导出CSV
  • [1] 徐学祖, 王家澄, 张立新. 冻土物理学[M]. 北京: 科学出版社, 2001.

    XU Xuezu, WANG Jiacheng, ZHANG Lixin. Frozen Soil Physics[M]. Beijing: Science Press, 2001. (in Chinese)

    [2] 孔超, 王美艳, 史学正, 等. 基于低场核磁技术研究土壤持水性能与孔隙特征[J]. 土壤学报, 2016, 53(5): 1130-1137. https://www.cnki.com.cn/Article/CJFDTOTAL-TRXB201605005.htm

    KONG Chao, WANG Meiyan, SHI Xuezheng, et al. Study on water holding capacity and pore characteristics of soils based on LF-NMR[J]. Acta Pedologica Sinica, 2016, 53(5): 1130-1137. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-TRXB201605005.htm

    [3] 田慧会, 韦昌富, 魏厚振, 等. 压实黏质砂土脱湿过程影响机制的核磁共振分析[J]. 岩土力学, 2014, 35(8): 2129-2136. https://www.cnki.com.cn/Article/CJFDTOTAL-YTLX201408001.htm

    TIAN Huihui, WEI Changfu, WEI Houzhen, et al. A NMR-based analysis of drying processes of compacted clayey sands[J]. Rock and Soil Mechanics, 2014, 35(8): 2129-2136. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YTLX201408001.htm

    [4] 叶万军, 吴云涛, 杨更社, 等. 干湿循环作用下古土壤细微观结构及宏观力学性能变化规律研究[J]. 岩石力学与工程学报, 2019, 38(10): 2126-2137. https://www.cnki.com.cn/Article/CJFDTOTAL-YSLX201910018.htm

    YE Wanjun, WU Yuntao, YANG Gengshe, et al. Study on microstructure and macro-mechanical properties of paleosol under dry-wet cycles[J]. Chinese Journal of Rock Mechanics and Engineering, 2019, 38(10): 2126-2137. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YSLX201910018.htm

    [5] 谭龙, 韦昌富, 田慧会, 等. 冻土未冻水含量的低场核磁共振试验研究[J]. 岩土力学, 2015, 36(6): 1566-1572. https://www.cnki.com.cn/Article/CJFDTOTAL-YTLX201506006.htm

    TAN Long, WEI Changfu, TIAN Huihui, et al. Experimental study of unfrozen water content of frozen soils by low-field nuclear magnetic resonance[J]. Rock and Soil Mechanics, 2015, 36(6): 1566-1572. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YTLX201506006.htm

    [6] 周家作, 谭龙, 韦昌富, 等. 土的冻结温度与过冷温度试验研究[J]. 岩土力学, 2015, 36(3): 777-785. https://www.cnki.com.cn/Article/CJFDTOTAL-YTLX201503027.htm

    ZHOU Jiazuo, TAN Long, WEI Changfu, et al. Experimental research on freezing temperature and super-cooling temperature of soil[J]. Rock and Soil Mechanics, 2015, 36(3): 777-785. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YTLX201503027.htm

    [7] 孔令明, 梁珂, 彭丽云. 比表面积对土冻结特征曲线影响的试验研究[J]. 岩土力学, 2021, 42(7): 1883-1893. https://www.cnki.com.cn/Article/CJFDTOTAL-YTLX202107013.htm

    KONG Lingming, LIANG Ke, PENG Liyun. Experimental study on the influence of specific surface area on the soil-freezing characteristic curve[J]. Rock and Soil Mechanics, 2021, 42(7): 1883-1893. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YTLX202107013.htm

    [8] 孟祥传, 周家作, 韦昌富, 等. 盐分对土的冻结温度及未冻水含量的影响研究[J]. 岩土力学, 2020, 41(3): 952-960. https://www.cnki.com.cn/Article/CJFDTOTAL-YTLX202003026.htm

    MENG Xiangchuan, ZHOU Jiazuo, WEI Changfu, et al. Effects of salinity on soil freezing temperature and unfrozen water content[J]. Rock and Soil Mechanics, 2020, 41(3): 952-960. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YTLX202003026.htm

    [9] 万旭升, 赖远明, 张明义, 等. 土中未冻含水率与温度关系研究[J]. 铁道学报, 2018, 40(1): 123-129.

    WAN Xusheng, LAI Yuanming, ZHANG Mingyi, et al. Research on relationship between unfrozen water content in soil and temperature[J]. Journal of the China Railway Society, 2018, 40(1): 123-129. (in Chinese)

    [10]

    TSYTOVICH N A. The Mechanics of Frozen Ground[M]. Washington D C: Scripta Book Co, 1975.

    [11]

    MICHALOWSKI R L. A constitutive model of saturated soils for frost heave simulations[J]. Cold Regions Science and Technology, 1993, 22(1): 47-63. doi: 10.1016/0165-232X(93)90045-A

    [12]

    MICHALOWSKI R L, ZHU M. Frost heave modelling using porosity rate function[J]. International Journal for Numerical and Analytical Methods in Geomechanics, 2006, 30(8): 703-722. doi: 10.1002/nag.497

    [13]

    YONG R. Soil suction effects on partial soil freezing[J]. Highway Res Rec, 1965, 68: 31-42.

    [14]

    ANDERSON D, MORGENSTERN N. Physics, chemistry, and mechanics of frozen ground. A reviewconference[C]// North American contribution to the 2nd Internat. Conference. Permafrost, 1974.

    [15]

    WEN Z, MA W, FENG W J, et al. Experimental study on unfrozen water content and soil matric potential of Qinghai-Tibetan silty clay[J]. Environmental Earth Sciences, 2012, 66(5): 1467-1476. doi: 10.1007/s12665-011-1386-0

    [16]

    BAI R Q, LAI Y M, ZHANG M Y, et al. Theory and application of a novel soil freezing characteristic curve[J]. Applied Thermal Engineering, 2018, 129: 1106-1114. doi: 10.1016/j.applthermaleng.2017.10.121

    [17]

    SPAANS E J A, BAKER J M. The soil freezing characteristic: its measurement and similarity to the soil moisture characteristic[J]. Soil Science Society of America Journal, 1996, 60(1): 13-19. doi: 10.2136/sssaj1996.03615995006000010005x

    [18]

    SUZUKI S. Dependence of unfrozen water content in unsaturated frozen clay soil on initial soil moisture content[J]. Soil Science and Plant Nutrition, 2004, 50(4): 603-606. doi: 10.1080/00380768.2004.10408518

    [19] 冷毅飞, 张喜发, 杨凤学, 等. 冻土未冻水含量的量热法试验研究[J]. 岩土力学, 2010, 31(12): 3758-3764. https://www.cnki.com.cn/Article/CJFDTOTAL-YTLX201012012.htm

    LENG Yifei, ZHANG Xifa, YANG Fengxue, et al. Experimental research on unfrozen water content of frozen soils by calorimetry[J]. Rock and Soil Mechanics, 2010, 31(12): 3758-3764. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YTLX201012012.htm

    [20] 李东阳. 冻土未冻水含量测试新方法的试验和理论研究[D]. 北京: 中国矿业大学(北京), 2011.

    LI Dongyang. The Experiment and Theoretical Research on a New Test Method to Measure Unfrozen Water Content in Frozen Soil[D]. Beijing: China University of Mining & Technology, Beijing, 2011. (in Chinese)

    [21]

    WATANABE K, WAKE T. Measurement of unfrozen water content and relative permittivity of frozen unsaturated soil using NMR and TDR[J]. Cold Regions Science and Technology, 2009, 59(1): 34-41. doi: 10.1016/j.coldregions.2009.05.011

    [22]

    KURYLYK B L, WATANABE K. The mathematical representation of freezing and thawing processes in variably-saturated, non-deformable soils[J]. Advances in Water Resources, 2013, 60: 160-177. doi: 10.1016/j.advwatres.2013.07.016

    [23] 应赛, 周凤玺, 文桃, 等. 盐渍土冻结过程中的特征温度研究[J]. 岩土工程学报, 2021, 43(1): 53-61. doi: 10.11779/CJGE202101006

    YING Sai, ZHOU Fengxi, WEN Tao, et al. Characteristic temperatures of saline soil during freezing[J]. Chinese Journal of Geotechnical Engineering, 2021, 43(1): 53-61. (in Chinese) doi: 10.11779/CJGE202101006

    [24] 田慧会, 韦昌富. 基于核磁共振技术的土体吸附水含量测试与分析[J]. 中国科学: 技术科学, 2014, 44(3): 295-305. https://www.cnki.com.cn/Article/CJFDTOTAL-JEXK201403009.htm

    TIAN Huihui, WEI Changfu. A NMR-based testing and analysis of adsorbed water content[J]. Scientia Sinica (Technologica), 2014, 44(3): 295-305. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-JEXK201403009.htm

    [25]

    CHEN Y Q, ZHOU Z F, WANG J G, et al. Quantification and division of unfrozen water content during the freezing process and the influence of soil properties by low-field nuclear magnetic resonance[J]. Journal of Hydrology, 2021, 602: 126719. doi: 10.1016/j.jhydrol.2021.126719

  • 期刊类型引用(7)

    1. 黄波林,殷跃平,李仁江,蒋树,秦臻,张鹏,闫国强. 滑坡涌浪综合防控工程措施研究进展与挑战. 工程地质学报. 2025(01): 159-170 . 百度学术
    2. 刘红波,于磊,陈志华,陈再捷,庞富刚. 全钢集成式附着升降脚手架冲击性能研究. 施工技术(中英文). 2022(22): 72-79 . 百度学术
    3. 王文沛,殷跃平,胡卸文,李滨,刘明学,祁小博. 碎屑流冲击下桩梁组合结构拦挡效果及受力特征研究. 地质力学学报. 2022(06): 1081-1089 . 百度学术
    4. 范定坚,任曼妮. 约束空心混凝土柱抗侧向冲击动力性能. 辽宁工程技术大学学报(自然科学版). 2021(03): 214-219 . 百度学术
    5. 陈伟,谢建斌,赵一锦,孙孝海,叶海涵,林煌超. 饱和沙土中高频液压振动沉桩敏感性因素分析. 哈尔滨商业大学学报(自然科学版). 2020(02): 214-218 . 百度学术
    6. 王亚月. 钢砼叉桩动力响应模拟分析探究. 水利规划与设计. 2020(07): 102-108 . 百度学术
    7. 任根立,王秀丽. 泥石流块石冲击下钢绞线网组合结构的动力响应模拟研究. 安全与环境工程. 2019(05): 85-93 . 百度学术

    其他类型引用(6)

图(11)  /  表(3)
计量
  • 文章访问数:  316
  • HTML全文浏览量:  46
  • PDF下载量:  70
  • 被引次数: 13
出版历程
  • 收稿日期:  2023-04-09
  • 网络出版日期:  2023-11-01
  • 刊出日期:  2024-06-30

目录

    /

    返回文章
    返回