• 全国中文核心期刊
  • 中国科技核心期刊
  • 美国工程索引(EI)收录期刊
  • Scopus数据库收录期刊

考虑地层损失的隔离桩对基坑旁侧盾构隧道变形保护研究

魏纲, 木志远, 齐永洁, 郭丙来, 项鹏飞

魏纲, 木志远, 齐永洁, 郭丙来, 项鹏飞. 考虑地层损失的隔离桩对基坑旁侧盾构隧道变形保护研究[J]. 岩土工程学报, 2024, 46(3): 480-489. DOI: 10.11779/CJGE20221403
引用本文: 魏纲, 木志远, 齐永洁, 郭丙来, 项鹏飞. 考虑地层损失的隔离桩对基坑旁侧盾构隧道变形保护研究[J]. 岩土工程学报, 2024, 46(3): 480-489. DOI: 10.11779/CJGE20221403
WEI Gang, MU Zhiyuan, QI Yongjie, GUO Binglai, XIANG Pengfei. Deformation protection of shield tunnels next to foundation pits by isolation piles considering formation loss[J]. Chinese Journal of Geotechnical Engineering, 2024, 46(3): 480-489. DOI: 10.11779/CJGE20221403
Citation: WEI Gang, MU Zhiyuan, QI Yongjie, GUO Binglai, XIANG Pengfei. Deformation protection of shield tunnels next to foundation pits by isolation piles considering formation loss[J]. Chinese Journal of Geotechnical Engineering, 2024, 46(3): 480-489. DOI: 10.11779/CJGE20221403

考虑地层损失的隔离桩对基坑旁侧盾构隧道变形保护研究  English Version

基金项目: 

浙江省基础公益研究计划项目 LGF22E080012

详细信息
    作者简介:

    魏纲(1977—),男,教授,博士生导师,从事地下隧道与周边环境相互影响及风险评估与控制等方面的研究。E-mail:weig@hzcu.edu.cn

    通讯作者:

    齐永洁, E-mail:qyjdaydayup@zju.edu.cn

  • 中图分类号: TU43

Deformation protection of shield tunnels next to foundation pits by isolation piles considering formation loss

  • 摘要: 基坑的开挖卸载会导致旁侧既有盾构隧道出现变形破坏,工程中常在基坑与隧道之间设置隔离桩来保护既有隧道。为研究基坑开挖影响下隔离桩外既有隧道的水平位移规律,建立基坑、隔离桩、既有隧道的三维力学计算模型,考虑基坑开挖引起的地层损失,推导了基坑卸荷引起的附加应力计算公式,基于Kerr地基模型并对地基系数做出调整,得到隔离桩挠曲变形计算公式,建立隔离桩挠曲变形影响区,根据影响区的地层损失推导了既有隧道水平位移计算公式,同时进行了案例验证与影响因素分析,对隔离桩的“牵引作用”与“保护作用”在理论上做出了解释。研究结果表明:计算结果与工程实测数据及数值模拟结果相互吻合;设置隔离桩能够有效降低隧道水平位移,起到很好的保护作用;保护作用随着隔离桩桩长的增加而逐渐增加;桩长达到临界点后,隔离桩“牵引作用”产生,保护作用随桩长增加而减小;桩间距较小时保护效果较好;隔离桩设置靠近基坑一侧时保护效果明显优于设置在靠近隧道一侧。
    Abstract: The excavation and unloading of a foundation pit will lead to the deformation and destruction of the adjacent tunnels. In engineering, the isolation piles are often set between the foundation pit and the tunnel to protect the tunnel. In order to study the horizontal displacement laws of the existing tunnels outside the isolation piles under the influences of excavation of foundation pits, a three-dimensional mechanical model is established. Considering the stratum loss caused by excavation of foundation pits, the formula for the additional stress caused by unloading of the foundation pits is derived. Based on the Kerr foundation model and the adjustment of the foundation coefficient, the formula for the deflection deformation of the isolation piles is obtained. Based on the formation loss in the affected area, the formula for calculating the horizontal displacement of the existing tunnels is deduced. At the same time, the case is verified and the influencing factors are analyzed. The "traction effects" and "protection effects" of the isolation piles are explained theoretically. The results show that the calculated results are consistent with the measured data and numerical results. Setting isolation piles can effectively reduce the horizontal displacement of the tunnels and play a good protective role. The protective effects of the short piles gradually increase with the increase of the length of the isolated piles. After the pile length reaches the critical point, the "traction effects" of the isolation piles occur, and the protective effects decrease with the increase of the pile length. The protection effects are better when the pile spacing is small. When the isolation piles are placed close to the side of the foundation pit, the protection effects are significantly better than those of the side close to the tunnels.
  • 图  1   力学模型平面图

    Figure  1.   Plan of mechanical model

    图  2   力学模型侧面图

    Figure  2.   Lateral view of mechanical model

    图  3   围护结构变形计算模型

    Figure  3.   Model for envelope deformation

    图  4   地层位移变形计算模型

    Figure  4.   Model for displacement deformation of formation

    图  5   桩土相互作用计算模型

    Figure  5.   Model for pile-soil interaction

    图  6   隔离桩变形示意图

    Figure  6.   Schematic diagram of deformation isolation piles

    图  7   基坑-隔离桩-隧道三者位移变形示意图

    Figure  7.   Schematic diagram of displacement deformation of foundation pit-isolation pile-tunnel

    图  8   紧密隔离桩与非紧密隔离桩的对比

    Figure  8.   Comparison between tight piles and non-tight isolation piles

    图  9   隔离桩挠曲变形形成的空隙区域示意图

    Figure  9.   Schematic diagram of void area formed by deflection deformation of isolation piles

    图  10   工程案例1隧道水平位移对比

    Figure  10.   Comparison of horizontal displacements of tunnels with different spacings in project case 1

    图  11   工程案例2隧道水平位移对比

    Figure  11.   Comparison of horizontal displacements of tunnels in project case 2

    图  12   工程案例3隧道水平位移对比

    Figure  12.   Comparison of horizontal displacements of tunnels in project case 3

    图  13   不同桩长隔离桩影响下的水平位移

    Figure  13.   Horizontal displacements of isolation piles under influences of different pile lengths

    图  14   桩间距影响下隧道的水平位移

    Figure  14.   Horizontal displacements of tunnels under influences of pile spacing

    图  15   设置不同位置桩时隧道水平位移分布曲线

    Figure  15.   Distribution curves of horizontal displacement of tunnels under different positions of piles

  • [1]

    WEI Gang, QI Yongjie, CHEN Chunlai, et al. Analysis of the protective effect of setting isolation piles outside the foundation pit on the underpass tunnel side[J]. Transportation Geotechnics, 2022, 35: 100791. doi: 10.1016/j.trgeo.2022.100791

    [2] 郑刚, 杜一鸣, 刁钰. 隔离桩对基坑外既有隧道变形控制的优化分析[J]. 岩石力学与工程学报, 2015, 34(增刊1): 3499-3509. https://www.cnki.com.cn/Article/CJFDTOTAL-YSLX2015S1111.htm

    ZHENG Gang, DU Yiming, DIAO Yu. Optimization analysis of efficiency of isolation piles in controlling the deformation of existing tunnels adjacent to deep excavation[J]. Chinese Journal of Rock Mechanics and Engineering, 2015, 34(S1): 3499-3509. (in Chinese))[ https://www.cnki.com.cn/Article/CJFDTOTAL-YSLX2015S1111.htm

    [3] 陈仁朋, AL-MADHAGI ASHRAF, 孟凡衍. 基坑开挖对旁侧隧道影响及隔断墙作用离心模型试验研究[J]. 岩土工程学报, 2018, 40(增刊2): 6-11. doi: 10.11779/CJGE2018S2002

    CHEN Ren-peng, AL-MADHAGI ASHRAF, MENG Fanyan. Three- dimensional centrifuge modeling of influence of nearby excavations on existing tunnels and effects of cut-off walls[J]. Chinese Journal of Geotechnical Engineering, 2018, 40(S2): 6-11. (in Chinese) doi: 10.11779/CJGE2018S2002

    [4] 成怡冲, 龚迪快, 叶俊能, 等. 基坑外设置隔离桩对土体水平位移的隔断效果分析[J]. 防灾减灾工程学报, 2019, 39(3): 478-486. https://www.cnki.com.cn/Article/CJFDTOTAL-DZXK201903014.htm

    CHENG Yichong, GONG Dikuai, YE Junneng, et al. Effect analysis of isolation piles outside foundation pit on controlling lateral soil displacement[J]. Journal of Disaster Prevention and Mitigation Engineering, 2019, 39(3): 478-486. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-DZXK201903014.htm

    [5] 张治国, 赵其华, 徐晨, 等. 基于影像源法的基坑开挖对邻近单桩影响简化分析[J]. 岩土力学, 2016, 37(7): 2011-2020. https://www.cnki.com.cn/Article/CJFDTOTAL-YTLX201607023.htm

    ZHANG Zhiguo, ZHAO Qihua, XU Chen, et al. Simplified analysis of adjacent single-pile response subjected to foundation pit excavation based on virtual image technique[J]. Rock and Soil Mechanics, 2016, 37(7): 2011-2020. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YTLX201607023.htm

    [6] 王涛, 徐日庆, 齐静静, 等. 盾构掘进引起的土体附加应力场分析[J]. 浙江大学学报(工学版), 2008, 42(11): 2009-2014. https://www.cnki.com.cn/Article/CJFDTOTAL-ZDZC200811029.htm

    WANG Tao, XU Riqing, QI Jingjing, et al. Additional stress field of surrounding soil due to shield tunneling[J]. Journal of Zhejiang University (Engineering Science), 2008, 42(11): 2009-2014. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-ZDZC200811029.htm

    [7]

    ZHANG X H, WEI G, JIANG C W. The study for longitudinal deformation of adjacent shield tunnel due to foundation pit excavation with consideration of the retaining structure deformation[J]. Symmetry-Basel, 2020, 12(12): 2013. doi: 10.3390/sym12122013

    [8] 刘念武, 龚晓南, 俞峰, 等. 内支撑结构基坑的空间效应及影响因素分析[J]. 岩土力学, 2014, 35(8): 2293-2298, 2306. https://www.cnki.com.cn/Article/CJFDTOTAL-YTLX201408024.htm

    LIU Nianwu, GONG Xiaonan, YU Feng, et al. Analysis of spatial effects in strutted excavation and related influential factors[J]. Rock and Soil Mechanics, 2014, 35(8): 2293-2298, 2306. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YTLX201408024.htm

    [9]

    OU C Y, CHIOU D C, WU T S. Three-Dimensional finite element analysis of deep excavations[J]. Journal of Geotechnical Engineering, 1996, 122(5): 337-345. doi: 10.1061/(ASCE)0733-9410(1996)122:5(337)

    [10] 冯国辉, 窦炳珺, 张高锋, 等. 隧道开挖引起水平向位移被动桩的简化计算方法[J]. 土木与环境工程学报(中英文), 2021(2): 10-18. https://www.cnki.com.cn/Article/CJFDTOTAL-JIAN202102002.htm

    FENG Guohui, DOU Bingjun, ZHANG Gaofeng, et al. Simplified calculation method for lateral displacement of passive pile caused by tunneling[J]. Journal of Civil and Environmental Engineering, 2021(2): 10-18. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-JIAN202102002.htm

    [11] 张治国, 姜蕴娟, 徐晨, 等. 对"考虑桩侧土体三维效应和地基剪切变形的隧道开挖对邻近桩基影响分析" 讨论的答复[J]. 岩土工程学报, 2018, 40(7): 1360-1362. doi: 10.11779/CJGE201807026

    ZHANG Zhiguo, JIANG Yunjuan, XU Chen, et al. Reply to Discussion on 'Influence of tunneling on deflection of adjacent piles considering shearing deformation of foundation and 3D effects of lateral soils beside piles"[J]. Chinese Journal of Geotechnical Engineering, 2018, 40(7): 1360-1362. (in Chinese) doi: 10.11779/CJGE201807026

    [12]

    LIANG R Z, WU W B, YU Feng, et al. Simplified method for evaluating tunnels deformation due to adjacent excavation[J]. Tunnelling and Underground Space Technology, 2018, 71(1): 94-105.

    [13] 鲁子爱. 多层地基横向荷载桩Ks值分布研究[J]. 岩土工程学报, 1988, 30(1): 48-56. http://cge.nhri.cn/cn/article/id/9148

    LU Ziai. Study on Ks value distribution of transverse load piles in multi-layer foundation[J]. Chinese Journal of Geotechnical Engineering, 1988, 30(1): 48-56. (in Chinese) http://cge.nhri.cn/cn/article/id/9148

    [14]

    PECK R B. Deep excavation and tunneling in soft ground[C]// Proceedings of the 7th International Conference on Soil Mechanics and Foundation Engineering, Mexico City, 1969: 225-281.

    [15]

    SAGASETA C. Analysis of undrained soil deformation due to ground loss[J]. Géotechnique, 1987, 37(3): 301-320. doi: 10.1680/geot.1987.37.3.301

    [16] 魏纲, 张鑫海. 基坑开挖引起下卧盾构隧道转动与错台变形计算[J]. 中南大学学报(自然科学版), 2019, 50(9): 2273-2284. https://www.cnki.com.cn/Article/CJFDTOTAL-ZNGD201909024.htm

    WEI Gang, ZHANG Xinhai. Calculation of rotation and shearing dislocation deformation of underlying shield tunnels due to foundation pit excavation[J]. Journal of Central South University (Science and Technology), 2019, 50(9): 2273-2284. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-ZNGD201909024.htm

    [17] 叶俊能, 郦亮, 郑翔, 等. 基坑开挖中门架式隔离桩对减小邻近地铁隧道影响的研究[J]. 城市轨道交通研究, 2020, 23(11): 32-37. https://www.cnki.com.cn/Article/CJFDTOTAL-GDJT202011009.htm

    YE Junneng, LI Liang, ZHENG Xiang, et al. Research on frame isolation pile to reduce the influence of foundation pit excavation on adjacent tunnel[J]. Urban Mass Transit, 2020, 23(11): 32-37. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-GDJT202011009.htm

    [18] 李小飞. 采用地质和力学相结合的方法分析隔离桩在地下工程建设中的作用[D]. 南京: 南京大学, 2018.

    LI Xiaofei. Using the Combination of Geology and Mechanics to Analyze the Role of Isolated Pile in Underground Engineering Construction[D]. Nanjing: Nanjin University, 2018. (in Chinese)

    [19] 曾晓鑫, 丁文湘, 彭玲, 等. 隔离桩间距对基坑开挖引起地铁隧道的位移影响分析[J]. 中国科技论文, 2018, 13(1): 17-22. https://www.cnki.com.cn/Article/CJFDTOTAL-ZKZX201801004.htm

    ZENG Xiaoxin, DING Wenxiang, PENG Ling, et al. Effects of pile spacing on the displacement of subway tunnel during excavation[J]. China Sciencepaper, 2018, 13(1): 17-22. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-ZKZX201801004.htm

    [20]

    QI Y J, WEI G, FENG F F, et al. Method of calculating the compensation for rectifying the horizontal displacement of existing tunnels by grouting[J]. Applied Sciences-Basel, 2021, 11(1): 40.

    [21] 城市轨道交通结构安全保护技术规范: CJJ/T 202—2013[S]. 北京: 中国建筑工业出版社, 2014.

    Technical Code for Protection Structures of Urban Rail Transit: CJJ/T 202—2013[S]. Beijing: China Architecture & Building Press, 2014. (in Chinese)

  • 期刊类型引用(6)

    1. 李晓龙,栗鹏超,刘小锋,孙立军,郭长龙,何况. 富水粉细砂层联络通道顶管法施工地表沉降分析. 郑州大学学报(工学版). 2025(01): 67-74 . 百度学术
    2. 杜明芳,赵洁,易领兵,张鹏,王宗勇,任方毅,朱行通. 地铁盾构区间机械法联络通道施工全过程正线隧道力学响应分析. 城市轨道交通研究. 2025(03): 6-13 . 百度学术
    3. 黄大维,陈后宏,徐长节,罗文俊,耿大新,刘家璇. 联络通道施工盾构机始发对已建盾构隧道影响试验研究. 岩土工程学报. 2025(05): 987-994 . 本站查看
    4. 周萌. 盾构法联络通道不同开洞位置对主隧道管片内力影响. 城市轨道交通研究. 2024(07): 81-87 . 百度学术
    5. 陈星欣,何明高,施文城,郭力群. 土岩复合地层盾构地中对接法刀盘拆卸不完全拱压力计算. 岩土工程学报. 2024(12): 2652-2660 . 本站查看
    6. 焦月红,万治安,顾佳伟,王寿鹤,周游,王勇,张跃曦. 装配式钢板箱水土中接收监测分析. 建设科技. 2024(S1): 199-202 . 百度学术

    其他类型引用(1)

图(15)
计量
  • 文章访问数:  410
  • HTML全文浏览量:  50
  • PDF下载量:  133
  • 被引次数: 7
出版历程
  • 收稿日期:  2022-11-13
  • 网络出版日期:  2024-03-14
  • 刊出日期:  2024-02-29

目录

    /

    返回文章
    返回