Experimental study on splitting tensile failure characteristics of frozen soils under impact loads
-
摘要: 冻土的动态拉伸强度和破坏特性在涉及冻土工程高效破碎和安全稳定性分析领域具有重要的参考价值。为研究负温和加载率对冻土动态拉伸性能的影响,利用铝质分离式Hopkinson压杆试验系统开展了冻土的动态巴西圆盘劈裂试验,结合高速摄像系统,分析了温度和加载率对冻土动态拉伸强度、能量耗散和破坏模式的影响,探讨了冻土巴西圆盘的劈裂破坏机理及动态拉伸强度的影响因素。结果表明:冲击荷载作用下,冻结黏土和冻结砂土巴西圆盘试样均遵循中心起裂的破坏模式,试件破坏为沿轴向相对完整的两半;随着冲击气压的增加,两种冻土的加载率均呈线性增大;两种冻土达到动态拉伸峰值应力所需的时间在92~242 μs范围内;两种冻土的动态拉伸强度均存在明显的温度效应和加载率效应,动态拉伸强度随温度的降低和加载率的增加而增大;不同负温条件下两种冻土的吸收能与动态拉伸强度均存在较好的线性关系;冲击气压的增加会导致冻土试样的破坏程度加剧,高剪切应力引起的三角破碎区面积逐渐增大。Abstract: The dynamic tensile strength and failure characteristics of frozen soils have important reference value in the field of efficient crushing and safety stability analysis of frozen soil projects. To study the effects of negative temperature and loading rate on the dynamic tensile properties of the frozen soils, the aluminum split Hopkinson pressure bar system is employed to conduct the dynamic Brazilian disc splitting test of frozen soil. In addition, by using the high-speed camera system, the influences of temperature and loading rate on the dynamic tensile strength, energy dissipation and failure mode of the frozen soils are analyzed. Finally, the splitting failure mechanism of the Brazilian disc and the influencing factors of dynamic tensile strength of the frozen soils are discussed. The results indicate that under the dynamic loads, the Brazilian disc specimens of frozen clay and frozen sand follow the central initiation failure mode, and the specimens are split into two relatively intact halves along the axial direction. With the increase of the impact pressure, the loading rate of two frozen soil types increases linearly, and the duration required for reaching the dynamic tensile peak stress for them is in the range of 92~242 μs. The dynamic tensile strength of the frozen soils shows the obvious temperature effects and loading rate effects, and its values increase with the decrease of the temperature and the increase of the loading rate. There is a good linear relationship between the absorbed energy and the dynamic tensile strength of the frozen soils under various negative temperature conditions. With the increase of the impact pressure, the damage degree of the frozen soil specimens is aggravated, and the triangular fracture zone area caused by high shear stress gradually increases.
-
Keywords:
- frozen soil /
- dynamic tensile strength /
- negative temperature /
- loading rate /
- failure mode
-
-
表 1 黏土颗粒级配
Table 1 Grain-size distribution of clay
粒径/mm 0~0.075 0.075~0.45 0.45~1 1~1.6 1.6~2 百分比/% 51.33 19.72 12.02 11.48 5.45 表 2 砂土颗粒级配
Table 2 Grain-size distribution of sand
粒径/mm 0~0.075 0.075~0.45 0.45~1 1~1.6 1.6~2 百分比/% 0.8 32.29 49.54 13.23 4.14 表 3 冻土试样劈裂破坏模式
Table 3 Splitting failure modes of frozen soil specimens
土质类型 温度/℃ 冲击气压/MPa 0.10 0.11 0.12 0.13 冻结黏土 -15 冻结砂土 -10 -
[1] 薛翊国, 孔凡猛, 杨为民, 等. 川藏铁路沿线主要不良地质条件与工程地质问题[J]. 岩石力学与工程学报, 2020, 39(3): 445-468. https://www.cnki.com.cn/Article/CJFDTOTAL-YSLX202003003.htm XUE Yiguo, KONG Fanmeng, YANG Weimin, et al. Main unfavorable geological conditions and engineering geological problems along Sichuan-Tibet railway[J]. Chinese Journal of Rock Mechanics and Engineering, 2020, 39(3): 445-468. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YSLX202003003.htm
[2] 胡英国, 吴新霞, 赵根, 等. 严寒条件下岩体开挖爆破振动安全控制特性研究[J]. 岩土工程学报, 2017, 39(11): 2139-2146. doi: 10.11779/CJGE201711023 HU Yingguo, WU Xinxia, ZHAO Gen, et al. Investigation of safety control for rock blasting excavation under cold condition[J]. Chinese Journal of Geotechnical Engineering, 2017, 39(11): 2139-2146. (in Chinese) doi: 10.11779/CJGE201711023
[3] 张熙胤, 于生生, 王万平, 等. 多年冻土区铁路桥梁高承台桩基础地震破坏机理及易损性研究[J]. 土木工程学报, 2022, 55(7): 77-89. https://www.cnki.com.cn/Article/CJFDTOTAL-TMGC202207006.htm ZHANG Xiyin, YU Shengsheng, WANG Wanping, et al. Seismic failure mechanism and fragility of pile foundation with elevated cap of railway bridge in permafrost region[J]. China Civil Engineering Journal, 2022, 55(7): 77-89. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-TMGC202207006.htm
[4] 马芹永. 人工冻土单轴抗拉、抗压强度的试验研究[J]. 岩土力学, 1996, 17(3): 76-81. https://www.cnki.com.cn/Article/CJFDTOTAL-YTLX603.013.htm MA Qinyong. Tensile strength, uniaxial compressive strength test on artificially frozen soils[J]. Rock and Soil Mechanics, 1996, 17(3): 76-81. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YTLX603.013.htm
[5] 彭万巍. 冻结黄土抗拉强度与应变率和温度的关系[J]. 岩土工程学报, 1998, 20(3): 31-33. http://www.cgejournal.com/cn/article/id/10123 PENG Wanwei. Tensile strength of frozen loess varying with strain rate and temperature[J]. Chinese Journal of Geotechnical Engineering, 1998, 20(3): 31-33. (in Chinese) http://www.cgejournal.com/cn/article/id/10123
[6] 陈有亮, 王明, 徐珊, 等. 上海人工冻结软黏土抗压抗拉强度试验研究[J]. 岩土工程学报, 2009, 31(7): 1046-1051. http://www.cgejournal.com/cn/article/id/13311 CHEN Youliang, WANG Ming, XU Shan, et al. Tensile and compressive strength tests on artifical frozen soft clay in Shanghai[J]. Chinese Journal of Geotechnical Engineering, 2009, 31(7): 1046-1051. (in Chinese) http://www.cgejournal.com/cn/article/id/13311
[7] 张勇敢, 鲁洋, 刘斯宏, 等. 基于巴西劈裂试验的冻结膨胀土拉伸特性研究[J]. 岩土工程学报, 2021, 43(11): 2046-2054. doi: 10.11779/CJGE202111011 ZHANG Yonggan, LU Yang, LIU Sihong, et al. Experimental study on tensile strength of frozen expansive soils based on Brazilian splitting tests[J]. Chinese Journal of Geotechnical Engineering, 2021, 43(11): 2046-2054. (in Chinese) doi: 10.11779/CJGE202111011
[8] 马冬冬, 马芹永, 黄坤, 等. 动静组合加载下不同负温人工冻结粉质黏土强度和变形特性分析[J]. 振动与冲击, 2022, 41(1): 154-160. https://www.cnki.com.cn/Article/CJFDTOTAL-ZDCJ202201020.htm MA Dongdong, MA Qinyong, HUANG Kun, et al. Strength of artificially frozen silty clay with different negative temperatures under dynamic and static combined loading and deformation characteristic analysis[J]. Journal of Vibration and Shock, 2022, 41(1): 154-160. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-ZDCJ202201020.htm
[9] ZHU Z W, JIA J X, ZHANG F L. A damage and elastic-viscoplastic constitutive model of frozen soil under uniaxial impact loading and its numerical implementation[J]. Cold Regions Science and Technology, 2020, 175: 103081.
[10] 赵毅鑫, 肖汉, 黄亚琼. 霍普金森杆冲击加载煤样巴西圆盘劈裂试验研究[J]. 煤炭学报, 2014, 39(2): 286-291. https://www.cnki.com.cn/Article/CJFDTOTAL-MTXB201402012.htm ZHAO Yixin, XIAO Han, HUANG Yaqiong. Dynamic split tensile test of Brazilian disc of coal with split Hopkinson pressure bar loading[J]. Journal of China Coal Society, 2014, 39(2): 286-291. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-MTXB201402012.htm
[11] 杨仁树, 李炜煜, 李永亮, 等. 3种岩石动态拉伸力学性能试验与对比分析[J]. 煤炭学报, 2020, 45(9): 3107-3118. https://www.cnki.com.cn/Article/CJFDTOTAL-MTXB202009008.htm YANG Renshu, LI Weiyu, LI Yongliang, et al. Comparative analysis on dynamic tensile mechanical properties of three kinds of rocks[J]. Journal of China Coal Society, 2020, 45(9): 3107-3118. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-MTXB202009008.htm
[12] XIA K W, YAO W. Dynamic rock tests using split Hopkinson (Kolsky) bar system–A review[J]. Journal of Rock Mechanics and Geotechnical Engineering, 2015, 7(1): 27-59.
[13] DAI F, XIA K W. Loading rate dependence of tensile strength anisotropy of barre granite[J]. Pure and Applied Geophysics, 2010, 167(11): 1419-1432.
[14] 平琦, 马芹永, 袁璞. 岩石试件SHPB劈裂拉伸试验中能量耗散分析[J]. 采矿与安全工程学报, 2013, 30(3): 401-407. https://www.cnki.com.cn/Article/CJFDTOTAL-KSYL201303017.htm PING Qi, MA Qinyong, YUAN Pu. Energy dissipation analysis of stone specimens in SHPB tensile test[J]. Journal of Mining & Safety Engineering, 2013, 30(3): 401-407. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-KSYL201303017.htm
[15] PEI P D, DAI F, LIU Y, et al. Dynamic tensile behavior of rocks under static pre-tension using the flattened Brazilian disc method[J]. International Journal of Rock Mechanics and Mining Sciences, 2020, 126: 104208.
[16] ZHOU G Q, HU K, ZHAO X D, et al. Laboratory investigation on tensile strength characteristics of warm frozen soils[J]. Cold Regions Science and Technology, 2015, 13: 81-90.
-
其他相关附件