• Scopus数据库收录期刊
  • 中国科技核心期刊
  • 全国中文核心期刊
  • 美国工程索引(EI)收录期刊

大理岩应变型岩爆红外前兆特征试验研究

宋月歆, 任富强, 刘冬桥

宋月歆, 任富强, 刘冬桥. 大理岩应变型岩爆红外前兆特征试验研究[J]. 岩土工程学报, 2023, 45(3): 609-617. DOI: 10.11779/CJGE20211568
引用本文: 宋月歆, 任富强, 刘冬桥. 大理岩应变型岩爆红外前兆特征试验研究[J]. 岩土工程学报, 2023, 45(3): 609-617. DOI: 10.11779/CJGE20211568
SONG Yuexin, REN Fuqiang, LIU Dongqiao. Experimental study on infrared precursors of marble strain burst[J]. Chinese Journal of Geotechnical Engineering, 2023, 45(3): 609-617. DOI: 10.11779/CJGE20211568
Citation: SONG Yuexin, REN Fuqiang, LIU Dongqiao. Experimental study on infrared precursors of marble strain burst[J]. Chinese Journal of Geotechnical Engineering, 2023, 45(3): 609-617. DOI: 10.11779/CJGE20211568

大理岩应变型岩爆红外前兆特征试验研究  English Version

基金项目: 

国家自然科学基金项目 52074299

深部岩土力学与地下工程国家重点实验室开放基金项目 SKLGDUEK2128

辽宁科技大学优秀青年科技人才项目 2021YQ02

详细信息
    作者简介:

    宋月歆(1997—),女,硕士研究生,主要从事岩石力学方面的研究工作。E-mail: s15613187281@163.com

    通讯作者:

    任富强, E-mail: renfuqiangcumtb@163.com

  • 中图分类号: TU431

Experimental study on infrared precursors of marble strain burst

  • 摘要: 为探究大理岩应变型岩爆的红外前兆特征,通过不同加载方式下单面临空的真三轴岩爆试验,模拟应力集中型和动力触发型岩爆的发生过程,使用红外热像仪监测两类岩爆的红外温度场变化过程,从平均红外温差、方差、升温速率、红外图像及傅里叶频谱图等方面分析了岩爆前兆信息,并探讨了不同类型岩爆前兆特征的差异。结果表明:岩爆发生前平均红外温差、方差及升温速率曲线均出现明显突增,其中平均红外温差突增分别提前应力集中型和动力触发型岩爆10,20 ms,可作为有效岩爆前兆;动力触发型岩爆发生前方差会出现小幅波动且升温速率有明显下降趋势,与温差曲线中岩爆前的一小段降温过程相对应,而应力集中型岩爆方差与升温速率无明显波动特征;岩爆前平均红外温差图像出现高低温异化现象,表现为:应力集中型岩爆前红外图像出现明显的倒“Y”型高温区域,动力触发型岩爆平均红外图像出现高温区域下移现象;此外,两类岩爆傅里叶频谱图中的垂直谱图均出现大量高频低幅的主要分量。
    Abstract: To explore the precursors of strain burst for marble, the processes of stress-concentrated (SC) and dynamic-triggered (DT) strain bursts are simulated by the true triaxial rock burst experiments under different loading modes, and the infrared radiation temperatures of strain bursts are monitored by the infrared thermal imaging instrument. Additionally, the precursors of marble strain burst are analyzed according to the average infrared temperature difference (AITD), variance (AITV), heating rate, average infrared images and Fourier spectra. Furthermore, the differences of precursor characteristics among different strain bursts are discussed. The results show that the AITD, AITV and temperature rise rate increase significantly before strain burst. Moreover, the sudden increase of AITD is ahead of strain burst (10 ms and 20 ms, respectively for SC and DT), which can be used as an effective precursor of strain burst. Additionally, the AITV before DT strain burst will fluctuate slightly, and the heating rate has an obvious downward trend, which corresponds to the cooling process of the AITD. However, for the SC strain burst, the AITV and heating rate both have no obvious fluctuation characteristics. Moreover, the infrared temperature difference images before strain burst show the phenomenon of high- and low-temperature alienations, specifically, the average infrared image before strain burst of SC shows an obvious inverted "Y" high-temperature region, and that for the DT strain burst shows a downward movement of high-temperature region. Finally, the vertical Fourier spectra both show a large number of main components with high frequency and low amplitude for the two types of strain bursts.
  • 图  1   岩爆试验系统

    Figure  1.   Rockburst experimental system

    图  2   应力加载路径

    Figure  2.   Stress loading paths

    图  3   红外图像处理过程示意图

    Figure  3.   Diagram of infrared image processing

    图  4   最大主应力方向应力-应变曲线

    Figure  4.   Stress-strain curves in maximum principal stress direction

    图  5   应力集中型岩爆平均辐射温差与加载过程的关系曲线

    Figure  5.   Relationship between average radiation temperature difference and loading process of stress-concentrated strain burst

    图  6   动力触发型岩爆平均辐射温差与加载过程的关系曲线

    Figure  6.   Relationship between average radiation temperature difference and loading process of dynamically triggered strain burst

    图  7   两种岩爆前4 s温差的方差曲线

    Figure  7.   Variance curves (4 s) of temperature difference before two types of strain bursts

    图  8   两种岩爆前4 s的升温速率曲线

    Figure  8.   Heating-rate curves (4 s) of temperature before two types of strain bursts

    图  9   平均红外温差图像

    Figure  9.   Average infrared temperature difference images

    图  10   应力集中型岩爆傅里叶频谱图

    Figure  10.   Fourier spectra of stress-concentrated strain burst

    图  11   动力触发型岩爆傅里叶频谱图

    Figure  11.   Fourier spectra of dynamically triggered strain burst

  • [1] 钱七虎. 岩爆、冲击地压的定义、机制、分类及其定量预测模型[J]. 岩土力学, 2014, 35(1): 1-6. https://www.cnki.com.cn/Article/CJFDTOTAL-YTLX201401001.htm

    QIAN Qihu. Definition, mechanism, classification and quantitative forecast model for rockburst and pressure bump[J]. Rock and Soil Mechanics, 2014, 35(1): 1-6. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YTLX201401001.htm

    [2] 张洁, 苏国韶, 石焱炯, 等. 应变型岩爆过程的声发射特征研究[J]. 实验力学, 2019, 34(1): 79-87. https://www.cnki.com.cn/Article/CJFDTOTAL-SYLX201901010.htm

    ZHANG Jie, SU Guoshao, SHI Yanjiong, et al. Experimental study of acoustic emission characteristics in strainburst process[J]. Journal of Experimental Mechanics, 2019, 34(1): 79-87. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-SYLX201901010.htm

    [3] 范鹏贤, 王明洋, 岳松林, 等. 应变型岩爆的孕育规律和预报防治方法[J]. 武汉理工大学学报, 2013, 35(4): 96-101. https://www.cnki.com.cn/Article/CJFDTOTAL-WHGY201304020.htm

    FAN Pengxian, WANG Mingyang, YUE Songlin, et al. Review on the evolution law, mechanics and prevention of strain rockburst[J]. Journal of Wuhan University of Technology, 2013, 35(4): 96-101. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-WHGY201304020.htm

    [4] 陈卫忠, 吕森鹏, 郭小红, 等. 脆性岩石卸围压试验与岩爆机理研究[J]. 岩土工程学报, 2010, 32(6): 963-969. http://cge.nhri.cn/cn/article/id/13443

    CHEN Weizhong, LÜ Senpeng, GUO Xiaohong, et al. Unloading confining pressure for brittle rock and mechanism of rock burst[J]. Chinese Journal of Geotechnical Engineering, 2010, 32(6): 963-969. (in Chinese) http://cge.nhri.cn/cn/article/id/13443

    [5] 邓树新, 王明洋, 李杰, 等. 冲击扰动下滑移型岩爆的模拟试验及机理探讨[J]. 岩土工程学报, 2020, 42(12): 2215-2221. doi: 10.11779/CJGE202012007

    DENG Shuxin, WANG Mingyang, LI Jie, et al. Mechanism and simulation experiment of slip-type rock bursts triggered by impact disturbances[J]. Chinese Journal of Geotechnical Engineering, 2020, 42(12): 2215-2221. (in Chinese) doi: 10.11779/CJGE202012007

    [6]

    AKDAG S, KARAKUS M, TAHERI A, et al. Effects of thermal damage on strain burst mechanism for brittle rocks under true-triaxial loading conditions[J]. Rock Mechanics and Rock Engineering, 2018, 51(6): 1657-1682.

    [7] 苏国韶, 陈智勇, 尹宏雪, 等. 高温后花岗岩岩爆的真三轴试验研究[J]. 岩土工程学报, 2016, 38(9): 1586-1594. doi: 10.11779/CJGE201609005

    SU Guoshao, CHEN Zhiyong, YIN Hongxue, et al. True triaxial tests on rockburst of granite after high temperatures[J]. Chinese Journal of Geotechnical Engineering, 2016, 38(9): 1586-1594. (in Chinese) doi: 10.11779/CJGE201609005

    [8]

    GONG F Q, SI X F, LI X B, et al. Experimental investigation of strain rockburst in circular Caverns under deep three-dimensional high-stress conditions[J]. Rock Mechanics and Rock Engineering, 2019, 52(5): 1459-1474.

    [9]

    SU G S, GAN W, ZHAI S B, et al. Acoustic emission precursors of static and dynamic instability for coarse-grained hard rock[J]. Journal of Central South University, 2020, 27(10): 2883-2898.

    [10] 何满潮, 任富强, 宫伟力, 等. 应变型岩爆物理模拟实验过程的温度特征[J]. 中国矿业大学学报, 2017, 46(4): 692-698.

    HE Manchao, REN Fuqiang, GONG Weili, et al. Temperature characteristics during physical simulation test of strain burst[J]. Journal of China University of Mining & Technology, 2017, 46(4): 692-698. (in Chinese)

    [11]

    SUN X M, XU H C, HE M C, et al. Experimental investigation of the occurrence of rockburst in a rock specimen through infrared thermography and acoustic emission[J]. International Journal of Rock Mechanics and Mining Sciences, 2017, 93: 250-259.

    [12] 陈智强, 张永兴, 周检英. 开挖诱发隧道围岩变形的红外热像试验研究[J]. 岩土工程学报, 2012, 34(7): 1271-1277. http://cge.nhri.cn/cn/article/id/14636

    CHEN Zhiqiang, ZHANG Yongxing, ZHOU Jianying. Experimental study on infrared photographs of deformation and failure of surrounding rock of tunnels procession induced by excavation[J]. Chinese Journal of Geotechnical Engineering, 2012, 34(7): 1271-1277. (in Chinese) http://cge.nhri.cn/cn/article/id/14636

    [13] 刘善军, 魏嘉磊, 黄建伟, 等. 岩石加载过程中红外辐射温度场演化的定量分析方法[J]. 岩石力学与工程学报, 2015, 34(增刊1): 2968-2976.

    LIU Shanjun, WEI Jialei, HUANG Jianwei, et al. Quantitative analysis methods of infrared radiation temperature field variation in rock loading process[J]. Chinese Journal of Rock Mechanics and Engineering, 2015, 34(S1): 2968-2976. (in Chinese)

    [14] 刘善军, 吴立新, 张艳博. 岩石破裂前红外热像的时空演化特征[J]. 东北大学学报(自然科学版), 2009, 30(7): 1034-1038. https://www.cnki.com.cn/Article/CJFDTOTAL-DBDX200907029.htm

    LIU Shanjun, WU Lixin, ZHANG Yanbo. Temporal-spatial evolution features of infrared thermal images before rock failure[J]. Journal of Northeastern University (Natural Science), 2009, 30(7): 1034-1038. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-DBDX200907029.htm

    [15]

    LIU W, MA L Q, SUN H, et al. Using the characteristics of infrared radiation b-value during the rock fracture process to offer a precursor for serious failure[J]. Infrared Physics & Technology, 2021, 114: 103644.

    [16] 何满潮, 刘冬桥, 宫伟力, 等. 冲击岩爆试验系统研发及试验[J]. 岩石力学与工程学报, 2014, 33(9): 1729-1739. https://www.cnki.com.cn/Article/CJFDTOTAL-YSLX201409001.htm

    HE Manchao, LIU Dongqiao, GONG Weili, et al. Development of a testing system for impact rockbursts[J]. Chinese Journal of Rock Mechanics and Engineering, 2014, 33(9): 1729-1739. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YSLX201409001.htm

    [17]

    HE M C. Physical modeling of an underground roadway excavation in geologically 45° inclined rock using infrared thermography[J]. Engineering Geology, 2011, 121(3/4): 165-176.

    [18]

    GONG W L, WANG J, GONG Y X, et al. Thermography analysis of a roadway excavation experiment in 60° inclined stratified rocks[J]. International Journal of Rock Mechanics and Mining Sciences, 2013, 60: 134-147.

    [19] 宫伟力, 何鹏飞, 江涛, 等. 小波去噪含水煤岩单轴压缩红外热像特征[J]. 华中科技大学学报(自然科学版), 2011, 39(6): 10-14, 23. https://www.cnki.com.cn/Article/CJFDTOTAL-HZLG201106003.htm

    GONG Weili, HE Pengfei, JIANG Tao, et al. Infrared thermography of saturated coal rock under uniaxial compression based on wavelet denoising[J]. Journal of Huazhong University of Science and Technology (Natural Science Edition), 2011, 39(6): 10-14, 23. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-HZLG201106003.htm

    [20]

    LU C P, DOU L M, LIU H, et al. Case study on microseismic effect of coal and gas outburst process[J]. International Journal of Rock Mechanics and Mining Sciences, 2012, 53: 101-110.

  • 期刊类型引用(16)

    1. 刘鹤冰. 川东红层地区隧道设计优化研究. 铁道建筑技术. 2025(03): 101-104 . 百度学术
    2. 邓子昂,张继勋,张玉贤,孙艳鹏. 代理模型驱动的隧洞支护方案多目标优化方法. 水力发电学报. 2025(04): 59-71 . 百度学术
    3. 洪开荣,刘永胜,潘岳. 钻爆法山岭隧道修建技术发展与展望. 现代隧道技术. 2024(02): 67-79 . 百度学术
    4. 赵建利,郝雪航,余洋,李鹏程,高华民. 苏基克纳里水电站调压竖井无锚支护研究. 河北水利电力学院学报. 2024(03): 38-44 . 百度学术
    5. 侯艳娟,张顶立,李然,陈旭,齐伟伟. 深埋三连拱隧道围岩压力计算方法. 力学学报. 2024(11): 3213-3226 . 百度学术
    6. 丁祥,刘勇,任玉鹏,韩智铭,马凯蒙. 以初期支护为主要承载结构的衬砌参数优化研究. 公路. 2024(12): 487-492 . 百度学术
    7. 张顶立,孙振宇,陶伟明. 隧道围岩大变形灾害特点与主动控制方法. 铁道标准设计. 2023(01): 1-9 . 百度学术
    8. 陈文博,张顶立,孙振宇,陈旭,孟令赞. 铁路隧道概率极限状态设计分项系数标定与讨论. 铁道标准设计. 2023(01): 17-24 . 百度学术
    9. 姚志雄,刘梦飞,吴波,刘耀星,陈希茂,郑国文,罗芷祎. 基于承载特性的群洞稳定性及初期支护优化研究. 现代隧道技术. 2023(01): 119-129 . 百度学术
    10. 刘鹤冰. 基于投资控制的高速公路PPP项目投资人对设计人的管理研究. 铁道建筑技术. 2023(09): 199-202 . 百度学术
    11. 梁鹏,高永涛,周喻,邓代强. 隧道初支合理支护时机确定方法及其工程应用. 工程科学学报. 2022(02): 265-276 . 百度学术
    12. 刘鹤冰. PPP模式下高速公路项目设计优化全过程管理探究. 铁道建筑技术. 2022(09): 131-135 . 百度学术
    13. 王嘉琛,张顶立,孙振宇,方黄城,刘昌. 水平互层围岩隧道破坏机理及其范围预测模型. 力学学报. 2022(10): 2835-2849 . 百度学术
    14. 刘耀儒,侯少康,程立,黄跃群. 水利工程智能建造进展及关键技术. 水利水电技术(中英文). 2022(10): 1-20 . 百度学术
    15. 彭磊. 公路小净距隧道后行洞支护结构位移及受力特性分析. 产业科技创新. 2021(01): 105-107 . 百度学术
    16. 焦战,肖洪天. 基于博弈赋权和综合灰色关联的围岩支护评价. 科学技术与工程. 2021(34): 14769-14774 . 百度学术

    其他类型引用(29)

  • 其他相关附件

图(11)
计量
  • 文章访问数:  301
  • HTML全文浏览量:  74
  • PDF下载量:  71
  • 被引次数: 45
出版历程
  • 收稿日期:  2021-12-29
  • 网络出版日期:  2023-03-15
  • 刊出日期:  2023-02-28

目录

    /

    返回文章
    返回