Anisotropic critical state model for sand and evaluation of bearing capacity of plate anchors in sandy seabed
-
摘要: 砂土组构各向异性及演化显著影响其力学行为,对砂土海床中板锚等承载特性有重要影响。基于各向异性临界状态理论框架(ACST),引入考虑组构各向异性非共轴流动法则,建立了砂土各向异性非共轴模型,并嵌入有限元ABAQUS;通过引入正则化技术,显著降低了砂土应变局部化导致的网格依赖性。基于不同应力路径砂土单元试验和砂土中板锚上拔离心试验,验证了上述模型;探究了不同组构沉积海床(沉积角α0为0°,45°,90°)中平板锚的上拔特性。研究表明:①同一应力水平和密实度下,平板锚的上拔峰值承载力随α0的增大而提高,因为高α0海床中的砂土组构演化更快、导致峰值摩擦角更高。②如忽略组构各向异性影响,并基于三轴压缩数据标定模型参数,可使砂土中板锚承载力高估达100%;因为各向同性模型在满足三轴压缩预测条件下会高估其他路径下(如三轴伸长、单剪)的砂土强度。③传统极限平衡法不考虑组构各向异性,只能合理预测沉积角α0=0°时锚板承载力,但低估了α0为45°,90°时的上拔承载力。Abstract: The fabric anisotropy and evolution of sand significantly affect its mechanical behavior, and thus play an important role in altering the bearing capacity of foundations (e.g., plate anchor) in sandy seabed. In this study, an elasto-plastic critical state model for sand considering fabric anisotropy and its evolution along with the non-coaxial plastic flow rule is developed within the framework of anisotropic critical state theory (ACST). The model is then implemented into the three-dimensional finite element program ABAQUS. By introducing the nonlocal plasticity theory, the mesh dependency caused by strain localization of sand is minimized. The predictive capacity of the proposed model is validated through the successful simulation of sand element tests subjected to various stress paths, and the centrifugal model tests on the pull-out behavior of the plate anchor in sand. The effects of fabric anisotropy on the pull-out responses of plate anchors in sandy seabed are investigated via parametric studies, which consider different levels of initial fabric anisotropy (sedimentation angle α0 =0°, 45°, 90°). It is revealed that: (1) For a given stress level and relative density of the sandy bed, the peak pull-out resistance of the plate anchor increases with α0. This is because the fabric of the soil along the sliding wedge (above the anchor) evolves faster at a higher α0 value, leading to a larger peak friction angle. (2) Ignoring the effects of fabric anisotropy leads to significant overestimation (by up to 100%) of the peak pull-out capacity of the plate anchor in sand, because the isotropic model that well predicts the triaxial compression behavior of sand will overestimate the strength of sand under other loading paths (such as triaxial extension and simple shear). (3) The traditional limit equilibrium analysis method does not consider the fabric anisotropy, and can only reasonably predict the pull-out capacity of the anchor plate when the sedimentation angle is α0=0°, but underestimates the scenarios of α0=45°, 90°.
-
-
表 1 本文的公式
Table 1 Proposed equations
描述 控制方程 模型参数 弹性模量 G=G0(2.97−e)21+e√p'pa 弹性模量G0 K=G2(1+ν)3(1−2ν) 泊松比ν 组构张量 Fij=(Fz000Fx000Fy)=√23(F0000−F02000−F02) 初始组构各向异性参数F0 各向异性变量 A=Fijnij=FnFijnij=FN 组构演化 dFij=Lkf(nij−Fij)eA 组构演化参数kf 屈服面方程 f=Rg(θ)−He−kh(A−1)2=0 硬化参数kh 剪胀方程 D=dεpii√23depijdepij=d1Mcg(θ)[1+RMcg(θ)][Mcg(θ)emζ−R] 三轴压缩临界状态应力比Mc
剪胀参数d1,m流动法则 depij=Lmij, mij=mcoij+mncijmcoij+mncij mcoij=∂g∂rij−∂g∂rmnδmnδij3∂g∂rij−∂g∂rmnδmnδij3(共轴部分) mncij=k(1−A)Fij(非共轴部分) 非共轴参数k 硬化法则 dH=Lrh=LG(ch−e)p′[Mcg(θ)e−nζR−1] 塑性模量 Kp=Rg(θ){G(1−che)p′H[Mcg(θ)e−nζR−1]+2khkf(1−A)2} 硬化参数ch,n e−(p'pa)ξ空间的临界状态线 ec=eΓ−λc(p'pa)ξ 临界状态线在e−(p'pa)ξ空间的截距、斜率、参数 eΓ,λc,ξ ζ=e−ec−eA(A−1) 状态相关参数eA 表 2 本构模型参数
Table 2 Parameters of constitutive model
参数 丰浦砂基于各向异性性模型 丰浦砂基于各向同性模型 UWA石英砂基于各向异性模型 弹性参数 G0 125 125 135 ν 0.1 0.1 0.05 临界状态参数 Mc 1.25 1.25 1.296 eΓ 0.934 0.934 0.812 λc 0.02 0.02 0.0189 ξ 0.7 0.7 0.7 剪胀参数 d1 0.2 0.2 1 m 5 5 3.5 组构参数 eA 0.095 — 0.045 kf 4.8 — 3 F0 0.45 — 0.35 非共轴参数 k 0.5 — 0.4 硬化参数 ch 1.4 1.4 0.45 kh 0.03 0.03 0.03 n 3 3 2 -
[1] 蒋明镜, 付昌, 刘静德, 等. 不同沉积方向各向异性结构性砂土离散元力学特性分析[J]. 岩土工程学报, 2016, 38(1): 138-146. doi: 10.11779/CJGE201601015 JIANG Mingjing, FU Chang, LIU Jingde, et al. DEM simulations of anisotropic structured sand with different deposit directions[J]. Chinese Journal of Geotechnical Engineering, 2016, 38(1): 138-146. (in Chinese) doi: 10.11779/CJGE201601015
[2] 姚仰平, 田雨, 刘林. 三维各向异性砂土UH模型[J]. 工程力学, 2018, 35(3): 49-55. https://www.cnki.com.cn/Article/CJFDTOTAL-GCLX201803006.htm YAO Yangping, TIAN Yu, LIU Lin. Three-dimensional anisotropic uh model for sands[J]. Engineering Mechanics, 2018, 35(3): 49-55. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-GCLX201803006.htm
[3] 宋飞, 张建民. 考虑侧向变形的各向异性砂土土压力试验研究[J]. 岩石力学与工程学报, 2009, 28(9): 1884-1895. https://www.cnki.com.cn/Article/CJFDTOTAL-YSLX200909022.htm SONG Fei, ZHANG Jianmin. Experimental study of earth pressure for anisotropic sand considering lateral displacement[J]. Chinese Journal of Rock Mechanics and Engineering, 2009, 28(9): 1884-1895. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YSLX200909022.htm
[4] 杨仲轩, 李相崧, 明海燕. 砂土各向异性和不排水剪切特性研究[J]. 深圳大学学报(理工版), 2009, 26(2): 158-163. https://www.cnki.com.cn/Article/CJFDTOTAL-SZDL200902011.htm YANG Zhongxuan, LI Xiangsong, MING Haiyan. Fabric anisotropy and undrained shear behavior of granular soil[J]. Journal of Shenzhen University Science and Engineering, 2009, 26(2): 158-163. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-SZDL200902011.htm
[5] 陈洲泉, 黄茂松. 砂土各向异性与非共轴特性的本构模拟[J]. 岩土工程学报, 2018, 40(2): 243-251. doi: 10.11779/CJGE201802004 CHEN Zhouquan, HUANG Maosong. Constitutive modeling of anisotropic and non-coaxial behaviors of sand[J]. Chinese Journal of Geotechnical Engineering, 2018, 40(2): 243-251. (in Chinese) doi: 10.11779/CJGE201802004
[6] 吴则祥, 陈佳莹, 尹振宇. 考虑砂土初始各向异性的单剪试验模拟分析[J]. 岩土工程学报, 2021, 43(6): 1157-1165. doi: 10.11779/CJGE202106020 WU Zexiang, CHEN Jiaying, YIN Zhenyu. Finite element simulation of simple shear tests considering inherent anisotropy[J]. Chinese Journal of Geotechnical Engineering, 2021, 43(6): 1157-1165. (in Chinese) doi: 10.11779/CJGE202106020
[7] 蒋明镜, 张安, 付昌, 等. 各向异性砂土宏微观特性三维离散元分析[J]. 岩土工程学报, 2017, 39(12): 2165-2172. doi: 10.11779/CJGE201712003 JIANG Mingjing, ZHANG An, FU Chang, et al. Macro and micro-behaviors of anisotropy granular soils using 3D DEM simulation[J]. Chinese Journal of Geotechnical Engineering, 2017, 39(12): 2165-2172. (in Chinese) doi: 10.11779/CJGE201712003
[8] LI X S, DAFALIAS Y F. Anisotropic critical state theory: role of fabric[J]. Journal of Engineering Mechanics, 2012, 138(3): 263-275. doi: 10.1061/(ASCE)EM.1943-7889.0000324
[9] 路德春, 罗汀, 姚仰平. 砂土应力路径本构模型的试验验证[J]. 岩土力学, 2005, 26(5): 717-722. https://www.cnki.com.cn/Article/CJFDTOTAL-YTLX200505009.htm LU Dechun, LUO Ting, YAO Yangping. Test validating of constitutive model of sand considering complex stress path[J]. Rock and Soil Mechanics, 2005, 26(5): 717-722. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YTLX200505009.htm
[10] GAO Z W, ZHAO J D, LI X S, et al. A critical state sand plasticity model accounting for fabric evolution[J]. International Journal for Numerical and Analytical Methods in Geomechanics, 2014, 38(4): 370-390. doi: 10.1002/nag.2211
[11] WANG R, DAFALIAS Y F, FU P C, et al. Fabric evolution and dilatancy within anisotropic critical state theory guided and validated by DEM[J]. International Journal of Solids and Structures, 2020, 188/189: 210-222.
[12] YANG Z X, LIAO D, XU T T. A hypoplastic model for granular soils incorporating anisotropic critical state theory[J]. International Journal for Numerical and Analytical Methods in Geomechanics, 2020, 44(6): 723-748.
[13] 董彤, 郑颖人, 孔亮, 等. 考虑主应力轴方向的砂土各向异性强度准则与滑动面研究[J]. 岩土工程学报, 2018, 40(4): 736-742. doi: 10.11779/CJGE201804018 DONG Tong, ZHENG Yingren, KONG Liang, et al. Strength criteria and slipping planes of anisotropic sand considering direction of major principal stress[J]. Chinese Journal of Geotechnical Engineering, 2018, 40(4): 736-742. (in Chinese) doi: 10.11779/CJGE201804018
[14] KAWAMURA S, MIURA S. Bearing capacity improvement of anisotropic sand ground[J]. Proceedings of the Institution of Civil Engineers - Ground Improvement, 2014, 167(3): 192-205.
[15] KIMURA T, KUSAKABE O, SAITOH K. Geotechnical model tests of bearing capacity problems in a centrifuge[J]. Géotechnique, 1985, 35(1): 33-45.
[16] GUO Peijun. Modified Direct Shear Test for Anisotropic Strength of Sand[J]. Journal of Geotechnical and Geoenvironmental Engineering, 2008, 134(9): 1311-1318.
[17] GAO Z W, LU D C, DU X L. Bearing capacity and failure mechanism of strip footings on anisotropic sand[J]. Journal of Engineering Mechanics, 2020, 146(8): 04020081.
[18] CHALOULOS Y K, PAPADIMITRIOU A G, DAFALIAS Y F. Fabric effects on strip footing loading of anisotropic sand[J]. Journal of Geotechnical and Geoenvironmental Engineering, 2019, 145(10): 04019068.
[19] 黄茂松, 钱建固, 吴世明. 饱和土体应变局部化的复合体理论[J]. 岩土工程学报, 2002, 24(1): 21-25. http://www.cgejournal.com/cn/article/id/10862 HUANG Maosong, QIAN Jiangu, WU Shiming. A homogenization approach to localized deformation in saturated soils[J]. Chinese Journal of Geotechnical Engineering, 2002, 24(1): 21-25. (in Chinese) http://www.cgejournal.com/cn/article/id/10862
[20] 吕玺琳, 黄茂松, 钱建固. 基于非共轴本构模型的砂土真三轴试验分叉分析[J]. 岩土工程学报, 2008, 30(5): 646-651. http://www.cgejournal.com/cn/article/id/12842 LÜ Xilin, HUANG Maosong, QIAN Jiangu. Bifurcation analysis in true traxial tests on sands based on non-coaxial elasto-plasticity model[J]. Chinese Journal of Geotechnical Engineering, 2008, 30(5): 646-651. (in Chinese) http://www.cgejournal.com/cn/article/id/12842
[21] LU X L, BARDET J P, HUANG M S. Spectral analysis of nonlocal regularization in two-dimensional finite element models[J]. International Journal for Numerical and Analytical Methods in Geomechanics, 2012, 36(2): 219-235.
[22] MALLIKARACHCHI H, SOGA K. Post-localisation analysis of drained and undrained dense sand with a nonlocal critical state model[J]. Computers and Geotechnics, 2020, 124: 103572.
[23] SLOAN S W. Substepping schemes for the numerical integration of elastoplastic stress-strain relations[J]. International Journal for Numerical Methods in Engineering, 1987, 24(5): 893-911.
[24] HUGHES T J R, WINGET J. Finite rotation effects in numerical integration of rate constitutive equations arising in large-deformation analysis[J]. International Journal for Numerical Methods in Engineering, 1980, 15(12): 1862-1867.
[25] LAM W K, TATSUOKA F. Effects of initial anisotropic fabric and σ2 on strength and deformation characteristics of sand[J]. Soils and Foundations, 1988, 28(1): 89-106.
[26] YOSHIMINE M, ISHIHARA K, VARGAS W. Effects of principal stress direction and intermediate principal stress on undrained shear behavior of sand[J]. Soils and Foundations, 1998, 38(3): 179-188.
[27] HAO D X, WANG D, O'LOUGHLIN C D, et al. Tensile monotonic capacity of helical anchors in sand: interaction between helices[J]. Canadian Geotechnical Journal, 2019, 56(10): 1534-1543.
[28] 王栋, 胡玉霞. 方形平板锚抗拉承载力的大变形有限元分析[J]. 岩土力学, 2008, 29(8): 2081-2086. https://www.cnki.com.cn/Article/CJFDTOTAL-YTLX200808015.htm WANG Dong, HU Yuxia. Large deformation finite element analyses of uplift capacity of square plate anchors[J]. Rock and Soil Mechanics, 2008, 29(8): 2081-2086. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YTLX200808015.htm
-
期刊类型引用(0)
其他类型引用(1)
-
其他相关附件