Deformation characteristics and failure mechanism of surrounding rock of high-stress large-diameter cylindrical caverns
-
摘要: 针对高应力大直径圆筒形洞室出现的岩爆、喷层开裂和钢绞线弹出等变形破坏现象,通过现场破坏调查、岩体位移和锚索应力监测,详细说明了围岩变形破坏的发展演化过程,并通过钻孔摄像观测了围岩内部破裂特征,进而总结了围岩变形破坏的演化模式。通过数值模拟揭示了洞室围岩变形破坏机制,并提出了合理的支护建议。高应力大直径圆筒型洞室变形破坏是一个链动灾害过程,围岩内部开裂导致了岩体位移和锚索荷载增加,锚索荷载超限时钢绞线断裂弹出,失去约束的洞壁围岩和喷层在卸荷作用下鼓胀开裂。高初始地应力和开挖后诱发的应力集中,玄武岩起裂强度低,临近洞室开挖诱发应力叠加,应力集中区支护强度较弱等综合因素导致了围岩内部开裂的产生。在洞室围岩应力集中区设置足够的预应力长锚索和合理的张拉力,可以有效减弱围岩内部破裂深度和程度。Abstract: Aiming at the deformation and damage phenomena such as rock burst, spray layer cracking and steel strand ejection in high-stress large-diameter cylindrical caverns, the development and evolution process of deformation and damage of the surrounding rock is explained through field investigation, observation of displacement of rock mass and stress of anchor cable. The internal fracture characteristics of the surrounding rock are observed through borehole camera, and the evolution mode of the deformation and failure of the surrounding rock is summarized. The deformation and failure mechanism of the surrounding rock of the cavern is revealed through numerical simulation, and reasonable support suggestions are put forward. The deformation and failure of the high-stress large-diameter cylindrical caverns is a chain-driven disaster process. The internal cracking of the surrounding rock leads to the increase in the displacement of the rock mass and the load of anchor cable. The steel strands break and pop out when the load of anchor cable exceed the limit. The surrounding rock and sprayed layer of unconstrained cave wall bulge and crack under the action of unloading. The high initial ground stress and the stress concentration induced after excavation, the low crack initiation strength of basalt, the superposition of stress induced by excavation adjacent to the cavern, and the weak support strength in the stress concentration areas lead to the occurrence of internal cracking in the surrounding rock. Setting enough pre-stressed long anchor cables and reasonable tension force in the stress concentration areas of the surrounding rock of the cavern can effectively reduce the depth and degree of internal fracture of the surrounding rock.
-
-
表 1 岩体力学参数
Table 1 Mechanical parameters of surrounding rock
弹性模
量/GPa泊松比 初始黏聚
力/MPa残余黏聚
力/MPa初始内摩擦
角/(°)残余内摩擦角/(°) 抗拉强
度/MPa黏聚力等效塑性剪应变 内摩擦角等效塑性剪应变 15.1 0.25 15 3 21.8 42 1.2 3×10-4 4×10-4 表 2 错动带力学参数
Table 2 Mechanical parameters of dislocation zone
错动带 弹性模量/GPa 泊松比 黏聚力/MPa 内摩擦角/(°) 抗拉强度/MPa C4 2.0 0.32 1.2 32 0.2 C3、C5 5.0 0.32 1.5 35 0.5 -
[1] 江权, 冯夏庭, 李邵军, 等. 高应力下大型硬岩地下洞室群稳定性设计优化的裂化-抑制法及其应用[J]. 岩石力学与工程学报, 2019, 38(6): 1081-1101. https://www.cnki.com.cn/Article/CJFDTOTAL-YSLX201906002.htm JIANG Quan, FENG Xiating, LI Shaojun, et al. Cracking-restraint design method for large underground Caverns with hard rock under high geostress condition and its practical application[J]. Chinese Journal of Rock Mechanics and Engineering, 2019, 38(6): 1081-1101. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YSLX201906002.htm
[2] 卢波, 丁秀丽, 邬爱清, 等. 高应力硬岩地区岩体结构对地下洞室围岩稳定的控制效应研究[J]. 岩石力学与工程学报, 2012, 31(增刊2): 3831-3846. https://www.cnki.com.cn/Article/CJFDTOTAL-YSLX2012S2052.htm LU Bo, DING Xiuli, WU Aiqing, et al. Study of influence of rock structure on surrounding rock mass stability of underground Caverns in hard rock region with high geostress[J]. Chinese Journal of Rock Mechanics and Engineering, 2012, 31(S2): 3831-3846. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YSLX2012S2052.htm
[3] 张勇, 肖平西, 丁秀丽, 等. 高地应力条件下地下厂房洞室群围岩的变形破坏特征及对策研究[J]. 岩石力学与工程学报, 2012, 31(2): 228-244. https://www.cnki.com.cn/Article/CJFDTOTAL-YSLX201202003.htm ZHANG Yong, XIAO Pingxi, DING Xiuli, et al. Study of deformation and failure characteristics for surrounding rocks of underground powerhouse Caverns under high geostress condition and countermeasures[J]. Chinese Journal of Rock Mechanics and Engineering, 2012, 31(2): 228-244. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YSLX201202003.htm
[4] 黄润秋, 黄达, 段绍辉, 等. 锦屏Ⅰ级水电站地下厂房施工期围岩变形开裂特征及地质力学机制研究[J]. 岩石力学与工程学报, 2011, 30(1): 23-35. https://www.cnki.com.cn/Article/CJFDTOTAL-YSLX201101003.htm HUANG Runqiu, HUANG Da, DUAN Shaohui, et al. Geomechanics mechanism and characteristics of surrounding rock mass deformation failure in construction phase for underground powerhouse of Jinping Ⅰ hydropower station[J]. Chinese Journal of Rock Mechanics and Engineering, 2011, 30(1): 23-35. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YSLX201101003.htm
[5] FENG X T, PEI S F, JIANG Q, et al. Deep fracturing of the hard rock surrounding a large underground cavern subjected to high geostress: in situ observation and mechanism analysis[J]. Rock Mechanics and Rock Engineering, 2017, 50(8): 2155-2175. doi: 10.1007/s00603-017-1220-4
[6] 孟国涛, 何世海, 陈建林, 等. 白鹤滩右岸地下厂房顶拱深层变形机理分析[J]. 岩土工程学报, 2020, 42(3): 576-583. doi: 10.11779/CJGE202003020 MENG Guotao, HE Shihai, CHEN Jianlin, et al. Mechanism of deep deformation of roof arch of underground powerhouse at right bank of Baihetan Hydropower Station[J]. Chinese Journal of Geotechnical Engineering, 2020, 42(3): 576-583. (in Chinese) doi: 10.11779/CJGE202003020
[7] 江权, 陈建林, 冯夏庭, 等. 大型地下洞室对穿预应力锚索失效形式与耦合模型[J]. 岩土力学, 2013, 34(8): 2271-2279. https://www.cnki.com.cn/Article/CJFDTOTAL-YTLX201308030.htm JIANG Quan, CHEN Jianlin, FENG Xiating, et al. Failure format and interactive mechanism of prestressed thru-anchor cable in a large underground Caverns[J]. Rock and Soil Mechanics, 2013, 34(8): 2271-2279. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YTLX201308030.htm
[8] 董志宏, 丁秀丽, 黄书岭, 等. 高地应力区大型洞室锚索时效受力特征及长期承载风险分析[J]. 岩土力学, 2019, 40(1): 351-362. https://www.cnki.com.cn/Article/CJFDTOTAL-YTLX201901037.htm DONG Zhihong, DING Xiuli, HUANG Shuling, et al. Analysis of ageing-stress characteristics and long-term bearing risk of anchor cable for a large cavern in high geo-stress area[J]. Rock and Soil Mechanics, 2019, 40(1): 351-362. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YTLX201901037.htm
[9] 江权, 樊义林, 冯夏庭, 等. 高应力下硬岩卸荷破裂: 白鹤滩水电站地下厂房玄武岩开裂观测实例分析[J]. 岩石力学与工程学报, 2017, 36(5): 1076-1087. https://www.cnki.com.cn/Article/CJFDTOTAL-YSLX201705004.htm JIANG Quan, FAN Yilin, FENG Xiating, et al. Unloading break of hard rock under high geo-stress condition: inner cracking observation for the basalt in the Baihetan's underground powerhouse[J]. Chinese Journal of Rock Mechanics and Engineering, 2017, 36(5): 1076-1087. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YSLX201705004.htm
[10] 戴峰, 李彪, 徐奴文, 等. 猴子岩水电站深埋地下厂房开挖损伤区特征分析[J]. 岩石力学与工程学报, 2015, 34(4): 735-746. https://www.cnki.com.cn/Article/CJFDTOTAL-YSLX201504010.htm DAI Feng, LI Biao, XU Nuwen, et al. Characteristics of damaged zones due to excavation in deep underground powerhouse at houziyan hydropower station[J]. Chinese Journal of Rock Mechanics and Engineering, 2015, 34(4): 735-746. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YSLX201504010.htm
[11] 卢波, 王继敏, 丁秀丽, 等. 锦屏一级水电站地下厂房围岩开裂变形机制研究[J]. 岩石力学与工程学报, 2010, 29(12): 2429-2441. https://www.cnki.com.cn/Article/CJFDTOTAL-YSLX201012010.htm LU Bo, WANG Jimin, DING Xiuli, et al. Study of deformation and cracking mechanism of surrounding rock of Jinping i underground powerhouse[J]. Chinese Journal of Rock Mechanics and Engineering, 2010, 29(12): 2429-2441. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YSLX201012010.htm
[12] 魏进兵, 邓建辉, 王俤剀, 等. 锦屏一级水电站地下厂房围岩变形与破坏特征分析[J]. 岩石力学与工程学报, 2010, 29(6): 1198-1205. https://www.cnki.com.cn/Article/CJFDTOTAL-YSLX201006016.htm WEI Jinbing, DENG Jianhui, WANG Dikai, et al. Characterization of deformation and fracture for rock mass in underground powerhouse of Jinping ⅰ hydropower station[J]. Chinese Journal of Rock Mechanics and Engineering, 2010, 29(6): 1198-1205. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YSLX201006016.htm
[13] 李仲奎, 周钟, 汤雪峰, 等. 锦屏一级水电站地下厂房洞室群稳定性分析与思考[J]. 岩石力学与工程学报, 2009, 28(11): 2167-2175. https://www.cnki.com.cn/Article/CJFDTOTAL-YSLX200911003.htm LI Zhongkui, ZHOU Zhong, TANG Xuefeng, et al. Stability analysis and considerations of underground powerhouse Caverns group of Jinping i hydropower station[J]. Chinese Journal of Rock Mechanics and Engineering, 2009, 28(11): 2167-2175. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YSLX200911003.htm
[14] 刘国锋, 冯夏庭, 江权, 等. 白鹤滩大型地下厂房开挖围岩片帮破坏特征、规律及机制研究[J]. 岩石力学与工程学报, 2016, 35(5): 865-878. https://www.cnki.com.cn/Article/CJFDTOTAL-YSLX201605001.htm LIU Guofeng, FENG Xiating, JIANG Quan, et al. Failure characteristics, laws and mechanisms of rock spalling in excavation of large-scale underground powerhouse Caverns in Baihetan[J]. Chinese Journal of Rock Mechanics and Engineering, 2016, 35(5): 865-878. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YSLX201605001.htm
[15] 韩刚, 赵其华, 彭社琴. 白鹤滩水电站坝区深部破裂岩体地应力演化特征[J]. 岩土力学, 2011, 32(增刊1): 583-589. https://www.cnki.com.cn/Article/CJFDTOTAL-YTLX2011S1103.htm HAN Gang, ZHAO Qihua, PENG Sheqin. In-situ stress field evolution of deep fracture rock mass at dam area of Baihetan hydropower station[J]. Rock and Soil Mechanics, 2011, 32(S1): 583-589. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YTLX2011S1103.htm
[16] 樊启祥, 汪志林, 何炜, 等. 金沙江白鹤滩水电站地下厂房玄武岩洞室群施工技术创新[J]. 中国科学: 技术科学, 2021, 51(9): 1088-1106. https://www.cnki.com.cn/Article/CJFDTOTAL-JEXK202109009.htm FAN Qixiang, WANG Zhilin, HE Wei, et al. Technological innovations in construction of underground Caverns in basaltic rocks at Baihetan Hydropower Station on Jinsha River[J]. Scientia Sinica (Technologica), 2021, 51(9): 1088-1106. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-JEXK202109009.htm
[17] 裴书锋, 赵金帅, 于怀昌, 等. 考虑洞室岩体应力型破坏特征的局部地应力反演方法及应用[J]. 岩土力学, 2020, 41(12): 4093-4104. https://www.cnki.com.cn/Article/CJFDTOTAL-YTLX202012030.htm PEI Shufeng, ZHAO Jinshuai, YU Huaichang, et al. Inversion method for local in situ stress considering stress-induced damage of cavern surrounding rock and its application[J]. Rock and Soil Mechanics, 2020, 41(12): 4093-4104. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YTLX202012030.htm
[18] MARTIN C D, CHRISTIANSSON R. Estimating the potential for spalling around a deep nuclear waste repository in crystalline rock[J]. International Journal of Rock Mechanics and Mining Sciences, 2009, 46(2): 219-228.
[19] 张传庆, 刘振江, 张春生, 等. 隐晶质玄武岩破裂演化及破坏特征试验研究[J]. 岩土力学, 2019, 40(7): 2487-2496. https://www.cnki.com.cn/Article/CJFDTOTAL-YTLX201907003.htm ZHANG Chuanqing, LIU Zhenjiang, ZHANG Chunsheng, et al. Experimental study on rupture evolution and failure characteristics of aphanitic basalt[J]. Rock and Soil Mechanics, 2019, 40(7): 2487-2496. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YTLX201907003.htm
[20] 张春生, 朱永生, 褚卫江, 等. 白鹤滩水电站隐晶质玄武岩力学特性及Hoek-Brown本构模型描述[J]. 岩石力学与工程学报, 2019, 38(10): 1964-1978. https://www.cnki.com.cn/Article/CJFDTOTAL-YSLX201910003.htm ZHANG Chunsheng, ZHU Yongsheng, CHU Weijiang, et al. Mechanical behaviors of basalt at Baihetan hydropower station and simulation with Hoek-Brown constitutive model[J]. Chinese Journal of Rock Mechanics and Engineering, 2019, 38(10): 1964-1978. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YSLX201910003.htm
[21] 周涛, 张发斌, 徐宇, 等. 复杂地质条件下特大直径尾水调压室开挖支护施工[J]. 云南水力发电, 2020, 36(8): 187-192. https://www.cnki.com.cn/Article/CJFDTOTAL-YNSD202008043.htm ZHOU Tao, ZHANG Fabin, XU Yu, et al. Excavation support construction of large diameter tailwater surge chamber under complex geological conditions[J]. Yunnan Water Power, 2020, 36(8): 187-192. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YNSD202008043.htm
-
期刊类型引用(9)
1. 宋泽宇,蒲力,马云飞. 含有机质黏土全吸力范围内土-水特征曲线试验研究. 水力发电. 2024(10): 114-118 . 百度学术
2. 童富果,蔡文婧,薛松,刘刚,李东奇. 基于孔隙分形特征的水泥基毛细吸力预测模型. 水利水电科技进展. 2024(06): 27-33 . 百度学术
3. 幸锦雯,孙文,余光耀,徐娜,麻建宏. 基于核磁共振及分形理论预测非饱和土石混合体SWCC. 水利水电技术(中英文). 2023(10): 180-189 . 百度学术
4. 王海曼,倪万魁. 不同干密度压实黄土的饱和/非饱和渗透系数预测模型. 岩土力学. 2022(03): 729-736 . 百度学术
5. 魏小棋,陈盼. 压实延安黄土土-水特性及快速测定方法探讨. 土工基础. 2022(03): 446-450 . 百度学术
6. 王海曼,倪万魁,刘魁. 延安压实黄土土-水特征曲线的快速预测方法. 岩土力学. 2022(07): 1845-1853 . 百度学术
7. 刘莉,姜大伟,于明波,颜荣涛,于海浩,陈波. 千枚岩全风化土的持水特性研究. 河南科技大学学报(自然科学版). 2022(06): 53-58+8 . 百度学术
8. 高世壮,薛善彬,张鹏,李春云,王俊洁. 高温作用对应变硬化水泥基复合材料吸水性能及微结构演化特征的影响. 复合材料学报. 2022(10): 4778-4787 . 百度学术
9. 马冬冬,马芹永,黄坤,张蓉蓉. 基于NMR的地聚合物水泥土孔隙结构与动态力学特性研究. 岩土工程学报. 2021(03): 572-578 . 本站查看
其他类型引用(14)