• 全国中文核心期刊
  • 中国科技核心期刊
  • 美国工程索引(EI)收录期刊
  • Scopus数据库收录期刊

侧限高压下珊瑚砂-石英砂混合料的压缩特性及颗粒破碎行为

王伟光, 姚志华, 李婉, 张建华

王伟光, 姚志华, 李婉, 张建华. 侧限高压下珊瑚砂-石英砂混合料的压缩特性及颗粒破碎行为[J]. 岩土工程学报, 2022, 44(S1): 6-11. DOI: 10.11779/CJGE2022S1002
引用本文: 王伟光, 姚志华, 李婉, 张建华. 侧限高压下珊瑚砂-石英砂混合料的压缩特性及颗粒破碎行为[J]. 岩土工程学报, 2022, 44(S1): 6-11. DOI: 10.11779/CJGE2022S1002
WANG Wei-guang, YAO Zhi-hua, LI Wan, ZHANG Jian-hua. Compression characteristics and particle crushing behavior of coral sand–quartz sand mixture under confined high pressure[J]. Chinese Journal of Geotechnical Engineering, 2022, 44(S1): 6-11. DOI: 10.11779/CJGE2022S1002
Citation: WANG Wei-guang, YAO Zhi-hua, LI Wan, ZHANG Jian-hua. Compression characteristics and particle crushing behavior of coral sand–quartz sand mixture under confined high pressure[J]. Chinese Journal of Geotechnical Engineering, 2022, 44(S1): 6-11. DOI: 10.11779/CJGE2022S1002

侧限高压下珊瑚砂-石英砂混合料的压缩特性及颗粒破碎行为  English Version

基金项目: 

国家自然科学基金项目 11972374

基础加强计划技术领域基金项目 2019-JCJQ-JJ-082

陕西省重点研发计划项目 2022SF-084

详细信息
    作者简介:

    王伟光(1996—),男,硕士,主要从事工程力学方面的研究工作。E-mail: wangweiguang@nint.ac.cn

    通讯作者:

    姚志华, E-mail: lightbright@163.com

  • 中图分类号: TU458

Compression characteristics and particle crushing behavior of coral sand–quartz sand mixture under confined high pressure

  • 摘要: 珊瑚砂的工程力学特征已被广泛研究,但特殊地域珊瑚砂并不是单独存在,常夹杂硅质杂质等形成珊瑚砂混合料,硅质杂质对珊瑚砂力学变形特性及颗粒破碎的影响机制尚不明晰。本文以标准石英砂充当硅质杂质,开展控制相对密实度和掺砂率的侧限高压压缩试验,对其压缩特性及颗粒破碎规律进行研究。试验结果表明,随着掺砂率的增加,珊瑚砂-石英砂混合料压缩变形逐渐降低,但石英砂未对混合料压缩曲线的变化趋势产生明显影响。相对密实度、竖向压力及掺砂率均对珊瑚砂-石英砂混合料的颗粒破碎构成重要影响。相较于高密实度条件下,低密实度时混合料在压缩过程中引起的颗粒破碎效应更为显著;随着竖向压力的增加,混合料的颗粒破碎效应逐步增大;掺砂率的提高在一定程度上降低了颗粒破碎的发生,这与石英砂较高的颗粒强度等因素密切相关。研究成果可对进一步认识硅质杂质对珊瑚砂压缩变形及颗粒破碎规律的影响提供一定参考和借鉴。
    Abstract: The special engineering mechanical characteristics of coral sand have been widely studied, but the coral sand in special areas is not isolated and often contains siliceous impurities to form coral sand mixture. The influence mechanism of the siliceous impurities on the mechanical deformation characteristics and particle breakage of the coral sand is still unclear. By using the standard quartz sand as the siliceous impurity, the confined high-pressure compression tests under different initial relative compactnesses and sand mass proportions are carried out to study its compression characteristics and particle crushing rules. The experimental results show that with the increasing proportion of quartz sand mass, the compressive deformation of the coral sand-quartz sand mixture decreases. However, the quartz sand has no obvious influences on the trend of its compression curve. The relative compactness, vertical pressure and sand mass proportion all have important effects on the particle breakage of the coral sand-quartz sand mixture. Compared with that at high compactness, the particle breakage effect of the mixture at low compactness is more significant in the process of compression. With the increase of the vertical pressure, the particle breakage effect of the mixture increases gradually. The increasing proportion of quartz sand mass reduces the occurrence of the particle breakage to a certain extent, which is closely related to the high particle strength of the quartz sand. The research results can provide some references for further understanding the influences of siliceous impurities on the compressive deformation and particle breakage of the coral sand.
  • 图  1   珊瑚砂和标准石英砂材料

    Figure  1.   Test materials of coral sand and quartz sand

    图  2   颗粒级配曲线

    Figure  2.   Grain-size distribution curves of particles

    图  3   SEM观测结果

    Figure  3.   Test results of SEM

    图  4   X射线显微镜检测结果

    Figure  4.   Test results of X-ray microscope

    图  5   竖向变形与竖向压力之间的关系曲线

    Figure  5.   Relationship between vertical deformation and pressure

    图  6   不同掺砂率条件下珊瑚砂的压缩曲线

    Figure  6.   Compression curves of coral sand under different sand mixing rates

    图  7   不同密实度条件下珊瑚砂压缩变形曲线

    Figure  7.   Curves of compressive deformation of coral sand under different compactnesses

    图  8   竖向压力–颗粒破碎率相关曲线

    Figure  8.   Relationship between vertical load and particle breakage

    图  9   不同密实度条件下的颗粒破碎率

    Figure  9.   Crushing rates of particles under different compactnesses

    表  1   材料基本物理参数

    Table  1   Basic physical indices of materials

    材料 最大孔隙比emax 最小孔隙比emin 颗粒相对密度Gs 不均匀系数Cu 曲率系数Cc
    珊瑚砂 1.410 0.770 2.739 2.670 1.168
    石英砂 0.455 0.725 2.658 6.494 1.044
    下载: 导出CSV
  • [1]

    WANG X Z, JIAO Y Y, WANG R, et al. Engineering characteristics of the calcareous sand in Nansha Islands, South China Sea[J]. Engineering Geology, 2011, 120(1): 40–47. doi: 10.3969/j.issn.1000-3665.2011.01.008

    [2] 王刚, 查京京, 魏星. 循环三轴应力路径下钙质砂颗粒破碎演化规律[J]. 岩土工程学报, 2019, 41(4): 755–760. doi: 10.11779/CJGE201904020

    WANG Gang, ZHA Jing-jing, WEI Xing. Evolution of particle crushing of carbonate sands under cyclic triaxial stress path[J]. Chinese Journal of Geotechnical Engineering, 2019, 41(4): 755–760. (in Chinese) doi: 10.11779/CJGE201904020

    [3]

    WEI H Z, ZHAO T, HE J Q, et al. Evolution of particle breakage for calcareous sands during ring shear tests[J]. International Journal of Geomechanics, 2018, 18(2): 04017153. doi: 10.1061/(ASCE)GM.1943-5622.0001073

    [4]

    ZHANG J R, LUO M X. Dilatancy and critical state of calcareous sand incorporating particle breakage[J]. International Journal of Geomechanics, 2020, 20(4): 04020030. doi: 10.1061/(ASCE)GM.1943-5622.0001637

    [5] 张家铭, 汪稔, 石祥锋, 等. 侧限条件下钙质砂压缩和破碎特性试验研究[J]. 岩石力学与工程学报, 2005, 24(18): 3327–3331. doi: 10.3321/j.issn:1000-6915.2005.18.022

    ZHANG Jia-ming, WANG Ren, SHI Xiang-feng, et al. Compression and crushing behavior of calcareous sand under confined compression[J]. Chinese Journal of Rock Mechanics and Engineering, 2005, 24(18): 3327–3331. (in Chinese) doi: 10.3321/j.issn:1000-6915.2005.18.022

    [6] 龙蛟, 顾琳琳, 王振, 等. 多次加-卸载条件下考虑颗粒破碎的钙质砂一维压缩特性研究[J]. 水利水运工程学报, 2022(1): 144–150. https://www.cnki.com.cn/Article/CJFDTOTAL-SLSY202201017.htm

    LONG Jiao, GU Lin-lin, WANG Zhen, et al. Study on one-dimensional compression characteristics of calcareous sand considering particle breakage under multiple loading-unloading conditions[J]. Hydro-Science and Engineering, 2022(1): 144–150. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-SLSY202201017.htm

    [7] 马启锋, 刘汉龙, 肖杨, 等. 高应力作用下钙质砂压缩及颗粒破碎特性试验研究[J]. 防灾减灾工程学报, 2018, 38(6): 1020–1025. https://www.cnki.com.cn/Article/CJFDTOTAL-DZXK201806018.htm

    MA Qi-feng, LIU Han-long, XIAO Yang, et al. Compression and particle breakage features of calcareous sand under high stress[J]. Journal of Disaster Prevention and Mitigation Engineering, 2018, 38(6): 1020–1025. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-DZXK201806018.htm

    [8] 李彦彬, 李飒, 刘小龙, 等. 颗粒破碎对钙质砂压缩特性影响的试验研究[J]. 工程地质学报, 2020, 28(2): 352–359. https://www.cnki.com.cn/Article/CJFDTOTAL-GCDZ202002016.htm

    LI Yan-bin, LI Sa, LIU Xiao-long, et al. Effect of particle breakage on compression properties of calcareous sands with oedometer tests[J]. Journal of Engineering Geology, 2020, 28(2): 352–359. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-GCDZ202002016.htm

    [9]

    MIAO G, AIREY D. Breakage and ultimate states for a carbonate sand[J]. Géotechnique, 2013, 63(14): 1221–1229.

    [10] 马林. 钙质土的剪切特性试验研究[J]. 岩土力学, 2016, 37(S1): 309–316. https://www.cnki.com.cn/Article/CJFDTOTAL-YTLX2016S1041.htm

    MA Lin. Experimental study of shear characteristics of calcareous gravelly soil[J]. Rock and Soil Mechanics, 2016, 37(S1): 309–316. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YTLX2016S1041.htm

    [11] 土工试验方法标准: GB/T 50123—2019[S]. 北京: 中国计划出版社, 2019.

    Standard for Geotechnical Test Methods: GB/T 50123—2019[S]. Beijing: China Planning Press, 2019. (in Chinese).

    [12] 李广信, 张丙印, 于玉贞. 土力学[M]. 2版. 北京: 清华大学出版社, 2013.

    LI Guang-xin, ZHANG Bing-yin, YU Yu-zhen. Soil Mechanics[M]. 2nd ed. Beijing: Tsinghua University Press, 2013. (in Chinese)

    [13] 汪稔, 孙吉主. 钙质砂不排水性状的损伤-滑移耦合作用分析[J]. 水利学报, 2002, 33(7): 75–78. https://www.cnki.com.cn/Article/CJFDTOTAL-SLXB200207012.htm

    WANG Ren, SUN Ji-zhu. Damage-slide coupled interaction behavior of undrained calcareous sand[J]. Journal of Hydraulic Engineering, 2002, 33(7): 75–78. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-SLXB200207012.htm

    [14] 袁泉, 李文龙, 高燕, 等. 钙质砂颗粒特征及其对压缩性影响的试验研究[J]. 水力发电学报, 2020, 39(2): 32–43. https://www.cnki.com.cn/Article/CJFDTOTAL-SFXB202002004.htm

    YUAN Quan, LI Wen-long, GAO Yan, et al. Experimental study on particle characteristics of calcareous sand and effect on its compressibility[J]. Journal of Hydroelectric Engineering, 2020, 39(2): 32–43. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-SFXB202002004.htm

    [15]

    YU F W. Particle breakage in granular soils: a review[J]. Particulate Science and Technology, 2021, 39(1): 91–100.

    [16]

    MCDOWELL G R, BOLTON M D. On the micromechanics of crushable aggregates[J]. Géotechnique, 1998, 48(5): 667–679.

    [17]

    HARDIN B O. Crushing of soil particles[J]. Journal of Geotechnical Engineering, 1985, 111(10): 1177–1192.

图(9)  /  表(1)
计量
  • 文章访问数:  160
  • HTML全文浏览量:  27
  • PDF下载量:  19
  • 被引次数: 0
出版历程
  • 收稿日期:  2022-09-27
  • 网络出版日期:  2023-02-06
  • 刊出日期:  2022-11-30

目录

    /

    返回文章
    返回