土工织物应用于新型压密注浆土钉的试验研究

    张升, 彭锐, 叶新宇, 李煜, 刘蔚

    张升, 彭锐, 叶新宇, 李煜, 刘蔚. 土工织物应用于新型压密注浆土钉的试验研究[J]. 岩土工程学报, 2022, 44(9): 1733-1740. DOI: 10.11779/CJGE202209019
    引用本文: 张升, 彭锐, 叶新宇, 李煜, 刘蔚. 土工织物应用于新型压密注浆土钉的试验研究[J]. 岩土工程学报, 2022, 44(9): 1733-1740. DOI: 10.11779/CJGE202209019
    ZHANG Sheng, PENG Rui, YE Xin-yu, LI Yu, LIU Wei. Experimental evaluation of performance of compaction-grouted soil nails using geotextile[J]. Chinese Journal of Geotechnical Engineering, 2022, 44(9): 1733-1740. DOI: 10.11779/CJGE202209019
    Citation: ZHANG Sheng, PENG Rui, YE Xin-yu, LI Yu, LIU Wei. Experimental evaluation of performance of compaction-grouted soil nails using geotextile[J]. Chinese Journal of Geotechnical Engineering, 2022, 44(9): 1733-1740. DOI: 10.11779/CJGE202209019

    土工织物应用于新型压密注浆土钉的试验研究  English Version

    基金项目: 

    国家自然科学基金项目 52008401

    湖南省自然科学基金项目 2021JJ40770

    湖湘高层次人才聚集工程创新团队项目 2019RS1008

    中南大学研究生自主探索创新项目 2021zzts0761

    中南大学研究生自主探索创新项目 2021zzts0222

    详细信息
      作者简介:

      张升(1979—),男,博士,教授,主要从事岩土工程方面的教学和科研工作。E-mail: zhang-sheng@csu.edu.cn

      通讯作者:

      叶新宇, E-mail: yexinyu113@csu.edu.cn

    • 中图分类号: TU432

    Experimental evaluation of performance of compaction-grouted soil nails using geotextile

    • 摘要: 针对乳胶膜式压密注浆土钉的潜在缺陷,提出了采用土工织物替代乳胶膜改进该土钉的新思路。首先,基于自研的土工织物反滤性能测定装置,开展了一系列水泥浆液反滤试验,研究了水灰比、浆液体积和注浆压力对土工织物反滤性能的影响,得到了注浆过程中上述影响因素影响下反滤时间和水灰比的变化规律。其次,对反滤前/后的砂土进行了贯入试验,评估了由于浆液中黏性物质入渗引起的周围土体强度提高。再次,对反滤前/后的水泥试块进行了单轴压缩试验,探明了节泡(水泥试块)强度显著提高的原因是土工织物反滤过程中节泡内水灰比的降低。最后,开展了土工织物和乳胶膜式压密注浆土钉的两组对比拉拔试验,验证了土工织物改进压密注浆土钉的优越性。研究成果能为压密注浆土钉的优化和应用奠定基础。
      Abstract: A new idea that adopts a geotextile instead of a latex membrane to improve the performance of a pressure-grouted soil nail is proposed. First, based on the self-developed device for testing filtration performance of the geotextile, a series of cement slurry filtration tests are carried out to study the influences of the water-cement ratio, slurry volume and grouting pressure on its filtration performance. The variations in the filtration time and water-cement ratio under the changes in the aforementioned influencing factors during pressure grouting are obtained. Second, a series of penetration tests on the surrounding sands before and after filtration tests are conducted, and the strength improvement due to the infiltration of cohesive substances from grout slurry is subsequently evaluated. Third, the uniaxial compression tests are carried out on the cement blocks before and after the filtration tests, and it is found that the strength of the grout bulb (cement block) largely increases because the water-cement ratio in the grout bulb is significantly reduced during the filtration of the geotextile. Finally, two series of pull-out tests on the compaction-grouted soil nails with a geotextile and a latex membrane are carried out to verify the superiority of improving the compaction-grouted soil nails by the geotextile. This study is helpful for the optimization and application of the compaction-grouted soil nails by using the geotextile.
    • 图  1   压密注浆土钉作用机理

      Figure  1.   Function mechanism of compaction-grouted soil nails

      图  2   砂的颗粒级配曲线

      Figure  2.   Grain-size distribution curve of sand

      图  3   土工织物反滤性能测定试验装置

      Figure  3.   Test device for filtration performance of geotextile

      图  4   贯入试验装置

      Figure  4.   Test device for penetration

      图  5   不同初始水灰比下水灰比随时间的变化

      Figure  5.   Variation of water-cement ratio with time under different initial water-cement ratios

      图  6   有/无土工织物的滤饼

      Figure  6.   Filter cakes with and without geotextile

      图  7   不同水灰比下贯入应力随深度的变化

      Figure  7.   Variation of penetration stress with depth under different water-cement ratios

      图  8   贯入应力随水灰比的变化

      Figure  8.   Variation of penetration stress with water-cement ratio

      图  9   不同浆液体积下水灰比随时间的变化

      Figure  9.   Variation of water-cement ratio with time under different slurry volumes

      图  10   不同浆液体积下贯入应力随深度的变化

      Figure  10.   Variation of penetration stress with depth under different slurry volumes

      图  11   贯入应力随浆液体积的变化

      Figure  11.   Variation of penetration stress with slurry volume

      图  12   不同注浆压力下水灰比随时间的变化

      Figure  12.   Variation of water-cement ratio with time under different grouting pressures

      图  13   不同注浆压力下贯入应力随深度的变化

      Figure  13.   Variation of penetration stress with depth under different grouting pressures

      图  14   贯入应力随注浆压力的变化

      Figure  14.   Variation of penetration stress with grouting pressure

      图  15   有/无反滤水泥试块强度

      Figure  15.   Strengths of cement blocks with and without filtration

      图  16   拉拔模型试验装置

      Figure  16.   Test device for pull-out model

      图  17   两种土钉的抗拔力

      Figure  17.   Pull-out forces of two soil nails

      表  1   水泥的相关参数

      Table  1   Related parameters of cement

      相关参数 细度(45 um)/% 比表面积/(m2·kg-1) 烧失量/% 初凝/min 终凝/min
      数值 10.8 33.5 3.54 178 228
      下载: 导出CSV

      表  2   土工织物的相关参数

      Table  2   Related parameters of geotextile

      相关参数 克重/(g·m-2) 厚度/mm 断裂强力/(kN·m-1) 等效孔径/mm 幅宽偏差/%
      数值 300 2.2 15 0.07~0.2 -0.5
      下载: 导出CSV

      表  3   砂的物理性质参数

      Table  3   Related parameters of sand

      相关参数 相对质量密度 最大干密度/(g·cm-3) 最小干密度/(g·cm-3)
      数值 2.67 1.70 1.42
      下载: 导出CSV

      表  4   反滤试验方案

      Table  4   Test schemes for filtration

      影响因素 水灰比 浆液体积/(10-3·m3) 注浆压力/kPa 初始干密度/(g·cm-3) 初始含水率/%
      水灰比 0.4 4 200 1.460 0
      0.5
      0.6
      0.7
      浆液体积/(10-3·m3) 0.5 2 200 1.460 0
      3
      4
      5
      6
      注浆压力/kPa 0.5 4 100 1.460 0
      200
      300
      400
      500
      下载: 导出CSV

      表  5   小型贯入试验方案

      Table  5   Test schemes for small-scale penetration

      影响因素 水灰比 浆液体积/(10-3·m3) 注浆压力/kPa 初始干密度/(g·cm-3) 初始含水率/%
      砂样经过反滤(土工织物) 0.4 4 200 1.460 0
      0.5
      0.6
      0.7
      0.5 2 200 1.460 0
      3
      4
      5
      6
      0.5 4 100 1.460 0
      200
      300
      400
      500
      砂样未经反滤(乳胶膜) 1.460 0
      1.460 4
      1.505
      1.529
      1.548
      1.561
      1.570
      下载: 导出CSV
    • [1] 叶新宇, 彭锐, 马新岩, 等. 压密效应对新型压密注浆土钉的强化研究[J]. 岩土工程学报, 2021, 43(9): 1649–1656, 1738. https://www.cnki.com.cn/Article/CJFDTOTAL-YTGC202109014.htm

      YE Xin-yu, PENG Rui, MA Xin-yan, et al. Enhancement of compaction grouting on a compaction-grouted soil nail in sand[J]. Chinese Journal of Geotechnical Engineering, 2021, 43(9): 1649–1656, 1738. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YTGC202109014.htm

      [2]

      YE X Y, WANG S Y, LI Q, et al. Negative effect of installation on performance of a compaction-grouted soil nail in poorly graded stockton beach sand[J]. Journal of Geotechnical and Geoenvironmental Engineering, 2020, 146(8): 04020061. doi: 10.1061/(ASCE)GT.1943-5606.0002301

      [3]

      YE X Y, WANG S Y, WANG Q, et al. Numerical and experimental studies of the mechanical behaviour for compaction grouted soil nails in sandy soil[J]. Computers and Geotechnics, 2017, 90: 202–214. doi: 10.1016/j.compgeo.2017.06.011

      [4]

      YE X Y, WANG S Y, XIAO X, et al. Numerical study for compaction-grouted soil nails with multiple grout bulbs[J]. International Journal of Geomechanics, 2019, 19(2): 04018193. doi: 10.1061/(ASCE)GM.1943-5622.0001342

      [5] 唐琳, 唐晓武, 孙凯. 不等轴双向拉伸无纺织物孔径变化理论研究[J]. 岩土力学, 2017, 38(12): 3597–3603. https://www.cnki.com.cn/Article/CJFDTOTAL-YTLX201712027.htm

      TANG Lin, TANG Xiao-wu, SUN Kai. Analytical solutions for pore size of nonwoven geotextiles under unequal biaxial tensile strain[J]. Rock and Soil Mechanics, 2017, 38(12): 3597–3603. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YTLX201712027.htm

      [6]

      PALMEIRA E M, TATTO J. Behaviour of geotextile filters in armoured slopes subjected to the action of waves[J]. Geotextiles and Geomembranes, 2015, 43(1): 46–55. doi: 10.1016/j.geotexmem.2014.11.003

      [7]

      ALVAREZ I E, RUBIO R, RICALDE H. Beach restoration with geotextile tubes as submerged breakwaters in Yucatan, Mexico[J]. Geotextiles and Geomembranes, 2007, 25(4/5): 233–241. http://www.onacademic.com/detail/journal_1000034019072210_aeef.html

      [8]

      LAWSON C R. Geotextile containment for hydraulic and environmental engineering[J]. Geosynthetics International, 2008, 15(6): 384–427. doi: 10.1680/gein.2008.15.6.384

      [9]

      TALAMKHANI S, NAEINI S A. The undrained shear behavior of reinforced clayey sand[J]. Geotechnical and Geological Engineering, 2021, 39(1): 265–283. doi: 10.1007/s10706-020-01490-4

      [10]

      YEE T W, LAWSON C R, WANG Z Y, et al. Geotextile tube dewatering of contaminated sediments, Tianjin Eco-City, China[J]. Geotextiles and Geomembranes, 2012, 31: 39–50. doi: 10.1016/j.geotexmem.2011.07.005

      [11] 杨春和, 张超, 李全明, 等. 大型高尾矿坝灾变机制与防控方法[J]. 岩土力学, 2021, 42(1): 1–17. https://www.cnki.com.cn/Article/CJFDTOTAL-YTLX202101002.htm

      YANG Chun-he, ZHANG Chao, LI Quan-ming, et al. Disaster mechanism and prevention methods of large-scale high tailings dam[J]. Rock and Soil Mechanics, 2021, 42(1): 1–17. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YTLX202101002.htm

      [12] 乐超, 徐超, 吴雪峰, 等. 两种塑料排水板滤膜淤堵特性试验研究[J]. 岩土力学, 2014, 35(9): 2529–2534. https://www.cnki.com.cn/Article/CJFDTOTAL-YTLX201409014.htm

      LE Chao, XU Chao, WU Xue-feng, et al. Experimental research on clogging characteristic of two types of PVD filters[J]. Rock and Soil Mechanics, 2014, 35(9): 2529–2534. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YTLX201409014.htm

      [13] 唐琳, 唐晓武, 王艳, 等. 不等轴双向拉应变下有纺织物孔径变化试验研究[J]. 岩土工程学报, 2016, 38(8): 1535–1540. https://www.cnki.com.cn/Article/CJFDTOTAL-YTGC201608023.htm

      TANG Lin, TANG Xiao-wu, WANG Yan, et al. Experimental study on pore size characteristics of woven geotextiles subjected to unequal biaxial tensile strains[J]. Chinese Journal of Geotechnical Engineering, 2016, 38(8): 1535–1540. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YTGC201608023.htm

      [14] 佘巍, 陈轮, 王钊. 无纺土工织物保土应用中的概率设计准则[J]. 岩土力学, 2007, 28(10): 2052–2054, 2059. doi: 10.3969/j.issn.1000-7598.2007.10.008

      SHE Wei, CHEN Lun, WANG Zhao. A probabilistic criterion for nonwoven geotextiles retention application[J]. Rock and Soil Mechanics, 2007, 28(10): 2052–2054, 2059. (in Chinese) doi: 10.3969/j.issn.1000-7598.2007.10.008

      [15] 吴纲, 雷国辉, 姜红. 有纺土工织物覆土条件下的渗透特性试验研究[J]. 岩土工程学报, 2017, 39(增刊1): 161–165. https://www.cnki.com.cn/Article/CJFDTOTAL-YTGC2017S1033.htm

      WU Gang, LEI Guo-hui, JIANG Hong. Experimental study on permeability of woven geotextile covered with soil[J]. Chinese Journal of Geotechnical Engineering, 2017, 39(S1): 161–165. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YTGC2017S1033.htm

      [16] 汪帅, 庄艳峰, 邓洪, 等. 双向拉伸与水流条件对反滤系统性能的影响[J]. 武汉大学学报(工学版), 2016, 49(2): 264–268. https://www.cnki.com.cn/Article/CJFDTOTAL-WSDD201602018.htm

      WANG Shuai, ZHUANG Yan-feng, DENG Hong, et al. Influences of bidirectional tensile strain and flow conditions on geotextile filtration[J]. Engineering Journal of Wuhan University, 2016, 49(2): 264–268. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-WSDD201602018.htm

      [17] 叶新宇, 彭锐, 张升, 等. 一种用于压密注浆土钉的土工织物性能测试系统及方法: CN110595985A[P]. 2019-12-20.

      YE Xin-yu, PENG Rui, ZHANG Sheng, et al. System and Method for Testing Performance of Geotextile for Compaction Grouting Soil Nails: CN110595985A[P]. 2019-12-20. (in Chinese)

      [18] 彭锐, 马新岩, 叶新宇, 等. 一种用于压密注浆土钉的土工织物性能测试系统: CN210953739U[P]. 2020-07-07.

      PENG Rui, MA Xin-yan, YE Xin-yu, et al. Geotextile Performance Testing System for Compaction Grouting Soil Nails: CN210953739U[P]. 2020-07-07. (in Chinese)

      [19]

      YE X Y, WANG S Y, WANG Q, et al. The influence of the degree of saturation on compaction-grouted soil nails in sand[J]. Acta Geotechnica, 2019, 14(4): 1101–1111. doi: 10.1007/s11440-018-0706-x

      [20] 白彬, 唐晓武, 唐琳, 等. 等双轴拉应变对无纺土工织物孔径变化的影响[J]. 岩土力学, 2015, 36(6): 1615–1621, 1626. https://www.cnki.com.cn/Article/CJFDTOTAL-YTLX201506012.htm

      BAI Bin, TANG Xiao-wu, TANG Lin, et al. Influence of equal biaxial tension on opening sizes of nonwoven geotextiles[J]. Rock and Soil Mechanics, 2015, 36(6): 1615–1621, 1626. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YTLX201506012.htm

      [21] 普通混凝土力学性能试验方法标准: GB/T 50081—2002[S]. 2003.

      Standard for Test Method of Mechanical Properties on Ordinary Concrete: GB/T 50081—2002[S]. 2003. (in Chinese)

      [22]

      LI X X, WU Z M, ZHENG J J, et al. Effect of loading rate on the bond behaviour of deformed steel bars in concrete subjected to lateral pressure[J]. Materials and Structures, 2016, 49(6): 2097–2111. doi: 10.1617/s11527-015-0636-0

      [23]

      CAO L, GUO J T, TIAN J H, et al. Preparation of Ca/Al-Layered Double Hydroxide and the influence of their structure on early strength of cement[J]. Construction and Building Materials, 2018, 184: 203–214. doi: 10.1016/j.conbuildmat.2018.06.186

    图(17)  /  表(5)
    计量
    • 文章访问数:  208
    • HTML全文浏览量:  43
    • PDF下载量:  67
    • 被引次数: 0
    出版历程
    • 收稿日期:  2021-09-21
    • 网络出版日期:  2022-09-22
    • 刊出日期:  2022-08-31

    目录

      /

      返回文章
      返回