Effects of water/salt phase transition on matric suction of sulfate saline soil
-
摘要: 硫酸盐渍土是中国西北寒旱区盐渍土的主要类型,在温度变化过程中,水分和盐分的相变会引起盐渍土基质吸力发生改变。以硫酸钠盐渍黄土为研究对象,探究了降温过程中的水盐相变对土体基质吸力的影响规律。结果表明:当土体尚未发生相变时,土体的基质吸力随温度的降低线性增加,而当土体中存在冰或者水合盐结晶时,土体的基质吸力在相变点处发生突变,盐渍土的基质吸力与土体的液态水含量息息相关。由于硫酸钠盐渍土在降温过程中会发生二次相变,二次相变使得盐渍土的基质吸力在二次相变点处同样产生突变,二次相变量的多少也会直接影响土体基质吸力的增加量。基于试验结果,进一步分析了不含盐素土基质吸力的预测方法,并讨论了硫酸钠盐渍土在冻结过程中的水分迁移驱动力。该研究不仅为深刻理解盐渍土水分迁移驱动力提供重要的参考,而且为盐渍土多场耦合理论的发展提供借鉴。
-
关键词:
- 硫酸盐渍土 /
- 基质吸力 /
- pF meter /
- 相变 /
- Clapeyron方程
Abstract: The sulfate saline soil is the main type of saline soil in cold and arid regions of Northwest China. As the environmental temperature changes, the ice formation and salt crystallization may change the matric suction of saline soil. The effects of water/salt phase transition on the matric suction of soil are investigated. The results show that the matric suction of soil linearly increases with the decreasing temperature before the phase transition occurs, and when ice forms or salt hydrate crystallizes in the soil, the matric suction of saline soil changes abruptly at the phase transition point. The matric suction of saline soil is closely related to the liquid water fraction of soil. Because the second phase transition occurs in the sulfate saline soil during cooling, the matric suction of saline soil also has a sudden change at the eutectic point, and the amount of the second phase transition directly affects the value of matric suction. Based on the experimental results, the prediction method for the matric suction of desalinized soil is further analyzed, and the water migration driving force of sodium sulfate saline soil is discussed during the freezing process. This study is helpful for the deep understanding of water migration driving force of saline soil and provides a reference for the development of multi-physical field coupling theory of saline soil.-
Keywords:
- sulfate saline soil /
- matric suction /
- pF meter /
- phase transition /
- Clapeyron equation
-
-
-
[1] 王遵亲, 祝寿泉, 俞仁培, 等. 中国盐渍土[M]. 北京: 科学出版社, 1993. WANG Zhun-qin, ZHU Shou-quan, YU Ren-pei, et al. Saline Soil in China[M]. Beijing: Science Press, 1993. (in Chinese)
[2] 房建宏, 霍明, 章金钊. 多年冻土及盐渍土地区公路工程技术[M]. 兰州: 兰州大学出版社, 2011. FANG Jian-hong, HUO Ming, ZHANG Jin-zhao. Technology for Highway Engineering in Permafrost and Saline Soil Regions[M]. Lanzhou: Lanzhou University Press, 2011. (in Chinese)
[3] 徐学祖, 王家澄, 张立新. 冻土物理学[M]. 北京: 科学出版社, 2010. XU Xue-zu, WANG Jia-cheng, ZHANG Li-xin. Physics of Frozen Soils[M]. Beijing: Science Press, 2010. (in Chinese)
[4] 于沉香, 张虎元, 王志硕, 等. 盐渍土土水特征曲线测试及预测[J]. 水文地质工程地质, 2013, 40(2): 113–118. https://www.cnki.com.cn/Article/CJFDTOTAL-SWDG201302023.htm YU Chen-xiang, ZHANG Hu-yuan, WANG Zhi-shuo, et al. Test and prediction of SWCC of saline soil[J]. Hydrogeology & Engineering Geology, 2013, 40(2): 113–118. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-SWDG201302023.htm
[5] 孙德安, 张谨绎, 宋国森. 氯盐渍土土-水特征曲线的试验研究[J]. 岩土力学, 2013, 34(4): 955–960. doi: 10.16285/j.rsm.2013.04.026 SUN De-an, ZHANG Jin-yi, SONG Guo-sen. Experimental study of soil-water characteristic curve of chlorine saline soil[J]. Rock and Soil Mechanics, 2013, 34(4): 955–960. (in Chinese) doi: 10.16285/j.rsm.2013.04.026
[6] 姜浩, 邴慧. 硫酸钠盐渍土土-水特征曲线的试验与理论研究[J]. 冰川冻土, 2021, 43(2): 497–509. https://www.cnki.com.cn/Article/CJFDTOTAL-BCDT202102015.htm JIANG Hao, BING Hui. Experimental and theoretical study on soil-water characteristic curve of sodium sulfate saline soil[J]. Journal of Glaciology and Geocryology, 2021, 43(2): 497–509. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-BCDT202102015.htm
[7] THYAGARAJ T, SALINI U. Effect of pore fluid osmotic suction on matric and total suctions of compacted clay[J]. Géotechnique, 2015, 65(11): 952–960. doi: 10.1680/jgeot.14.P.210
[8] 张悦, 叶为民, 王琼, 等. 含盐遗址重塑土的吸力测定及土水特征曲线拟合[J]. 岩土工程学报, 2019, 41(9): 1661–1669. http://manu31.magtech.com.cn/Jwk_ytgcxb/CN/abstract/abstract17997.shtml ZHANG Yue, YE Wei-min, WANG Qiong, et al. Suction measurement and SWRC modelling for reconstituted salt-laden soils in earthen heritages[J]. Chinese Journal of Geotechnical Engineering, 2019, 41(9): 1661–1669. (in Chinese) http://manu31.magtech.com.cn/Jwk_ytgcxb/CN/abstract/abstract17997.shtml
[9] FATTAH M Y, YAHYA A Y, ALHADIDI M T, et al. Effect of salt sontent on total and matric suction of unsaturated soils[J]. European Journal of Scientific Research, 2013(9): 228–245.
[10] 王利莉, 党进谦, 杨晓松. 盐渍土土水特征曲线的研究[J]. 工程勘察, 2009, 37(2): 19–23. https://www.cnki.com.cn/Article/CJFDTOTAL-GCKC200902004.htm WANG Li-li, DANG Jin-qian, YANG Xiao-song. The research of soil-water characteristic curves of saline soil[J]. Geotechnical Investigation & Surveying, 2009, 37(2): 19–23. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-GCKC200902004.htm
[11] 高燕希, 符力平. 非饱和土吸力的温度性质[J]. 力学与实践, 2003, 25(3): 55–57. https://www.cnki.com.cn/Article/CJFDTOTAL-LXYS200303017.htm GAO Yan-xi, FU Li-ping. The temperature property of soil suction for unsaturated soils[J]. Mechanics and Engineering, 2003, 25(3): 55–57. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-LXYS200303017.htm
[12] 蔡国庆, 赵成刚, 刘艳. 非饱和土土-水特征曲线的温度效应[J]. 岩土力学, 2010, 31(4): 1055–1060. doi: 10.3969/j.issn.1000-7598.2010.04.008 CAI Guo-qing, ZHAO Cheng-gang, LIU Yan. Temperature effects on soil-water characteristic curve of unsaturated soils[J]. Rock and Soil Mechanics, 2010, 31(4): 1055–1060. (in Chinese) doi: 10.3969/j.issn.1000-7598.2010.04.008
[13] 王叶娇, 靳奉雨, 孙德安, 等. 非饱和黄土持水特性的温度效应研究[J]. 地下空间与工程学报, 2021, 17(1): 189–194. https://www.cnki.com.cn/Article/CJFDTOTAL-BASE202101022.htm WANG Ye-jiao, JIN Feng-yu, SUN De-an, et al. Investigating the effect of temperature on the water retention curve of unsaturated loess sample[J]. Chinese Journal of Underground Space and Engineering, 2021, 17(1): 189–194. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-BASE202101022.htm
[14] 张宏, 刘海洋, 李聪. 风积沙路基土土-水特征曲线温度效应研究[J]. 中国公路学报, 2020, 33(7): 42–49. https://www.cnki.com.cn/Article/CJFDTOTAL-ZGGL202007004.htm ZHANG Hong, LIU Hai-yang, LI Cong. Temperature effect of soil-water on characteristic curve of aeolian sand subgrade soil[J]. China Journal of Highway and Transport, 2020, 33(7): 42–49. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-ZGGL202007004.htm
[15] MA W, ZHANG L H, YANG C S. Discussion of the applicability of the generalized Clausius-Clapeyron equation and the frozen fringe process[J]. Earth-Science Reviews, 2015, 142: 47–59.
[16] HANSSON K, SIMUNEK J, MIZOGUCHI M, et al. Water flow and heat transport in frozen soil: numerical solution and freeze-thaw applications[J]. Vadose Zone Journal, 2004, 3(2): 693–704.
[17] WEN Z, MA W, FENG W J, et al. Experimental study on unfrozen water content and soil matric potential of Qinghai-Tibetan silty clay[J]. Environmental Earth Sciences, 2012, 66(5): 1467–1476.
[18] 张熙胤. 土体冻融水热变化特征及变形过程研究[D]. 北京: 中国科学院大学, 2017. ZHANG Xiyin. Study on Hydro-thermal Characteristics and Deformation Behavior of Soils during Freezing and Thawing Processes[D]. Beijing: University of Chinese Academy of Sciences, 2017. (in Chinese)
[19] 薛珂, 温智, 张明礼, 等. 基于pF meter传感器的土体冻融过程中基质势与未冻水量关系研究[J]. 干旱区资源与环境, 2017, 31(12): 155–160. https://www.cnki.com.cn/Article/CJFDTOTAL-GHZH201712025.htm XUE Ke, WEN Zhi, ZHANG Ming-li, et al. PF meter-based study on the relationship between soil matric potential and unfrozen water content during soil freezing and thawing[J]. Journal of Arid Land Resources and Environment, 2017, 31(12): 155–160. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-GHZH201712025.htm
[20] 薛珂, 杨明彬, 温智, 等. 基于pF Meter的土体冻结特征曲线研究[J]. 中国公路学报, 2018, 31(3): 22–29. https://www.cnki.com.cn/Article/CJFDTOTAL-ZGGL201803004.htm XUE Ke, YANG Ming-bin, WEN Zhi, et al. pF meter-based research on soil freezing characteristic curves[J]. China Journal of Highway and Transport, 2018, 31(3): 22–29. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-ZGGL201803004.htm
[21] WAN X S, LAI Y M, WANG C. Experimental study on the freezing temperatures of saline silty soils[J]. Permafrost and Periglacial Processes, 2015, 26(2): 175–187.
[22] XIAO Z A, HOU Z R, ZHU L Z, et al. Experimental investigation of the influence of salt on the phase transition temperature in saline soil[J]. Cold Regions Science and Technology, 2021, 183(1): 103229.
[23] SHE H Y, SLEEP B E. The effect of temperature on capillary pressure-saturation relationships for air-water and perchloroethylene-water systems[J]. Water Resources Research, 1998, 34(10): 2587–2597.
[24] ROMERO E, GENS A, LLORET A. Temperature effects on the hydraulic behaviour of an unsaturated clay[J]. Geotechnical & Geological Engineering, 2001, 19(3/4): 311–332.
[25] 王铁行, 卢靖, 岳彩坤. 考虑温度和密度影响的非饱和黄土土-水特征曲线研究[J]. 岩土力学, 2008, 29(1): 1–5. https://www.cnki.com.cn/Article/CJFDTOTAL-YTLX200801002.htm WANG Tie-hang, LU Jing, YUE Cai-kun. Soil-water characteristic curve for unsaturated loess considering temperature and density effect[J]. Rock and Soil Mechanics, 2008, 29(1): 1–5. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YTLX200801002.htm
[26] MIZOGUCHI M. A derivation of matric potential in frozen soil[J]. The bulletin of the Faculty of Bioresources, 1993, 10: 175–182.
[27] KOOPMANS R W R, MILLER R D. Soil freezing and soil water characteristic curves[J]. Soil Science Society of America Journal, 1966, 30(6): 680–685.
[28] THOMAS H R, CLEALL P, LI Y C, et al. Modelling of cryogenic processes in permafrost and seasonally frozen soils[J]. Géotechnique, 2009, 59(3): 173–184.
[29] LAI Y M, PEI W S, ZHANG M Y, et al. Study on theory model of hydro-thermal-mechanical interaction process in saturated freezing silty soil[J]. International Journal of Heat and Mass Transfer, 2014, 78: 805–819.
[30] 周凤玺, 王立业, 赖远明. 饱和盐渍土渗透吸力的回顾及研究[J]. 岩土工程学报, 2020, 42(7): 1199–1210. http://manu31.magtech.com.cn/Jwk_ytgcxb/CN/abstract/abstract18243.shtml ZHOU Feng-xi, WANG Li-ye, LAI Yuan-ming. Review and research on osmotic suction of saturated saline soils[J]. Chinese Journal of Geotechnical Engineering, 2020, 42(7): 1199–1210. (in Chinese) http://manu31.magtech.com.cn/Jwk_ytgcxb/CN/abstract/abstract18243.shtml
[31] 雷志栋, 杨诗秀, 谢森传. 土壤水动力学[M]. 北京: 清华大学出版社, 1988. LEI Zhi-dong, YANG Shi-xiu, XIE Seng-chuan. Soil Water Dynamics[M]. Beijing: Tsinghua University Press, 1988. (in Chinese)
-
期刊类型引用(14)
1. 卢小雨,李直勇,董春亮,谢雅,张博文,郝建平. 不同夹角与厚度交叉裂隙类岩体蠕变力学性能及损伤破坏. 水利水电技术(中英文). 2025(02): 216-231 . 百度学术
2. 宋岳,柳滔,余俊爽. 基于PFC~(2D)的砂岩直剪试验尺寸效应数值模拟研究. 水力发电. 2025(04): 18-24 . 百度学术
3. 李盛南,刘新喜,李玉,王玮玮,周炎明. 炭质泥岩渐进破坏过程的变形特性及损伤演化研究. 中国公路学报. 2022(04): 99-107 . 百度学术
4. 王璐. 二次损伤岩石的蠕变研究综述. 工程技术研究. 2022(07): 39-42 . 百度学术
5. 陶伟,叶唐进,张文海,王潇宇,刘丛丛. 含裂隙类岩石单轴压缩疲劳性能试验研究. 岩土工程技术. 2022(05): 389-394 . 百度学术
6. 刁杨龙,洛锋,李盟,吕振,续培东,郭钇君. 裂隙岩体细观裂纹演化机制及局部力学特性研究. 煤炭与化工. 2021(09): 22-26 . 百度学术
7. 薛永明,单启伟,戴兵,贺桂成,王程程,吴文渊,陈英. 不同损伤程度花岗岩在冲击荷载作用下的动态力学特性. 有色金属工程. 2020(03): 54-61 . 百度学术
8. 王程程,罗鑫尧,陈科旭,戴兵,贺桂成. 含预制裂隙类岩石裂隙演化与破裂特征的试验研究. 黄金科学技术. 2020(03): 421-429 . 百度学术
9. 孙闯,敖云鹤,张家鸣,王帅. 花岗岩细观破裂特征及宏观尺度效应的颗粒流研究. 岩土工程学报. 2020(09): 1687-1695 . 本站查看
10. 周慧颖,李树忱,李阳,马鹏飞. V形裂隙类岩石材料单轴压缩光弹性试验. 科学技术与工程. 2020(25): 10415-10421 . 百度学术
11. 尤明庆. 岩石的损伤、黏结和摩擦特性研究. 岩土工程学报. 2019(03): 554-560 . 本站查看
12. 冯春迪,黄仁东. 红砂岩中矿物颗粒的塑性应变分析. 黄金科学技术. 2019(04): 557-564 . 百度学术
13. 王超,刘长武,刘德峰. 单轴压缩下饱水裂隙砂岩体积效应的试验研究. 地下空间与工程学报. 2019(05): 1331-1340 . 百度学术
14. 平琦,张号,苏海鹏. 不同长度石灰岩动态压缩力学性质试验研究. 岩石力学与工程学报. 2018(S2): 3891-3897 . 百度学术
其他类型引用(18)