Processing math: 100%
  • 全国中文核心期刊
  • 中国科技核心期刊
  • 美国工程索引(EI)收录期刊
  • Scopus数据库收录期刊

用Bayes法及后验分布极限确定土力学参数

阮永芬, 魏德永, 杨均, 高骏, 刘克文, 彭栓栓

阮永芬, 魏德永, 杨均, 高骏, 刘克文, 彭栓栓. 用Bayes法及后验分布极限确定土力学参数[J]. 岩土工程学报, 2020, 42(3): 438-446. DOI: 10.11779/CJGE202003005
引用本文: 阮永芬, 魏德永, 杨均, 高骏, 刘克文, 彭栓栓. 用Bayes法及后验分布极限确定土力学参数[J]. 岩土工程学报, 2020, 42(3): 438-446. DOI: 10.11779/CJGE202003005
RUAN Yong-fen, WEI De-yong, YANG Jun, GAO Jun, LIU Ke-wen, PENG Shuan-shuan. Determination of soil mechanics parameters based on Bayes method and posterior distribution limit[J]. Chinese Journal of Geotechnical Engineering, 2020, 42(3): 438-446. DOI: 10.11779/CJGE202003005
Citation: RUAN Yong-fen, WEI De-yong, YANG Jun, GAO Jun, LIU Ke-wen, PENG Shuan-shuan. Determination of soil mechanics parameters based on Bayes method and posterior distribution limit[J]. Chinese Journal of Geotechnical Engineering, 2020, 42(3): 438-446. DOI: 10.11779/CJGE202003005

用Bayes法及后验分布极限确定土力学参数  English Version

基金项目: 

云南省重点研发计划项目 2018BC008

详细信息
    作者简介:

    阮永芬(1964— ),女,教授,博士,主要从事岩土工程方面的教学和科研。E-mail:ryy64@aliyun.com

  • 中图分类号: TU443

Determination of soil mechanics parameters based on Bayes method and posterior distribution limit

  • 摘要: 岩土力学参数在空间分布上具有很大随机性,现有研究都是从参数小样本去推断大样本,这难免会存在一些失误。若样本数量足够大,正态分布会变得高度集中在某个值附近,勘察失误或偶然因素导致岩土参数统计误差的影响会越来越小,据此提供给勘察设计的岩土力学参数就更准确。根据收集的滇池湖相沉积的离散性高的泥炭质土、粉土及黏土的黏聚力c和内摩擦角φ的大量试验数据,用Bayes大样本法对几种土的力学参数进行分析,充分利用已采集样本带来的先验信息,推求土力学参数的后验信息,并得到贝叶斯估计区间。当Fisher信息量确定后,土力学参数正态分布均值μ验分布可用一个与先验分布无关的正态分布来逼近,就可得到当样本量趋于无穷时参数的收敛取值,并用后验分布极限对土力学参数的相合性及渐近正态性进行检验分析。对滇池湖相沉积土力学指标进行大样本分析,推求土力学指标的收敛值就落在贝叶斯估值区间,充分证明了分析方法的可行性及可靠性。分析结果为地区规范编制及工程经验的积累提供参考,也为设计计算参数取值的合理性提供检验。
    Abstract: Geotechnical parameters are of great randomness in spatial distribution, and the existing researches are to infer large samples from small ones, which will inevitably lead to some errors. If the number of samples is large enough, the normal distribution will become highly concentrated near a certain value. The influences of statistical errors of geotechnical parameters will become smaller and smaller resulting from the investigation errors or accidental factors, then the more accurate parameters will be provided during prospective design. According to the collected experimental data of the cohesive force c and the internal friction angle φ of Dianchi Lake facies deposition peat soil, silt and clay with high dispersion, the Bayesian large sample method is used to analyze the mechanical parameters of several soils, the posterior information of mechanical parameters of soils is derived based on the prior information from the collected samples, and the Bayesian estimation interval is obtained. After the Fisher information is determined, the posterior distribution of the mean value μ of the normal distribution of mechanical parameters of soils can be approximated by a normal distribution independent of the prior distribution, and the reliable value of the parameters can be obtained when the sample size tends to infinity. The consistency and asymptotic normality of mechanical parameters of soils are tested and analyzed by the posterior distribution limit. A large sample analysis of the mechanical indexes of the sedimentary soils in Dianchi Lake is carried out. The reliable value of the mechanics index of soils is estimated to fall within the Bayesian evaluation interval, which fully proves the feasibility and reliability of the analytical method. The analysis results may provide reference for the compilation of regional norms and the accumulation of engineering experience, and also a test for the rationality of the design parameters.
  • 图  1   3种土的样本频率直方图及P-P图

    Figure  1.   Frequency histogram and P-P diagram of three soil samples

    图  2   力学参数均值μ的后验分布图

    Figure  2.   Posterior distribution of mean μ of mechanical parameters

    图  3   粉土φ和黏土c的样本频率直方图与P-P图

    Figure  3.   Frequency histogram and P-P diagram of silt φ & clay c

    图  4   力学参数的 μ 的后验相合性检验图

    Figure  4.   Posterior consistency tests on μ of mechanical parameters

    表  1   土的力学参数的样本数

    Table  1   Number of samples for mechanical parameters of soils

    土类泥炭质土粉土黏土
    黏聚力c/个269230540
    内摩擦角φ/个294248476
    下载: 导出CSV

    表  2   3种土的力学参数均值和方差

    Table  2   Mean values and variances of mechanical parameters of three soil samples

    泥炭质土粉土黏土
    ˉc/kPaσ2cˉφ/(°)σ2φˉc/kPaσ2cˉφ/(°)σ2φˉc/kPaσ2cˉφ/(°)σ2φ
    29.49.85.91.916.02.617.40.427.812.19.161.79
    24.910.06.72.515.93.717.60.430.99.78.791.65
    19.67.86.62.017.63.517.20.529.611.59.272.08
    32.111.36.53.018.74.517.60.633.19.59.411.96
    27.58.05.92.417.44.317.50.531.77.78.261.76
    26.79.66.22.715.44.717.30.829.59.88.871.95
    32.97.96.92.915.93.517.60.627.510.08.111.73
    26.39.25.82.817.13.417.70.727.28.59.201.54
    24.48.66.42.517.43.617.50.627.710.49.321.40
    23.99.96.52.618.04.317.30.327.511.08.711.75
    25.110.26.42.814.53.317.20.129.411.39.771.47
    27.811.26.72.417.33.517.60.528.311.18.291.58
    28.87.66.52.016.14.317.30.633.210.28.701.94
    31.27.65.92.118.02.617.70.730.111.88.801.78
    29.38.05.62.318.13.017.20.529.510.48.491.38
    27.08.76.43.314.82.017.40.625.510.88.781.63
    25.38.15.92.417.82.417.70.632.912.58.051.95
    30.49.87.61.416.13.917.50.627.99.78.311.80
    26.67.16.32.317.83.017.50.731.49.68.602.26
    31.38.48.02.716.82.117.50.427.310.98.761.58
    26.47.47.32.418.64.017.40.529.37.09.481.91
    25.36.67.13.1  17.40.229.810.18.551.53
    23.79.35.31.7    28.47.08.431.76
    26.38.56.72.9    31.610.18.771.82
    27.710.06.72.6    25.511.1
    27.47.67.62.7    28.010.4
    26.8 5.72.5    32.911.7
      7.42.4
      5.92.6
      7.51.8        
    下载: 导出CSV

    表  3   先验参数取值与后验参数计算表

    Table  3   Values of a priority parameter and calculation of posterior parameter

    土名参数nμ0σ20θτ2r/2λ/2kvnknμ(ˉx)vnσ2nσ2n
    泥炭质土c/kPa2727.189.3027.182.9352.340.1703.17131.6830.1727.18242.141.83
    φ/(°)6.522.756.480.6730.480.0804.1090.9634.106.5279.920.88
    粉土c/kPa2216.923.7316.971.2119.260.1802.7860.5224.7816.9378.701.30
    φ/(°)2417.450.5417.450.158.410.0603.6040.8227.6017.4512.540.04
    黏土c/kPa2719.3710.8429.402.2356.370.1904.86139.7431.8629.40695.734.97
    φ/(°)248.781.848.780.4667.930.0254.00159.8628.008.7842.370.26
    下载: 导出CSV

    表  4   参数的可信区间统计表

    Table  4   Statistical table of confidence interval of parameters

    土类指标Bayes可信区间经典统计学可信区间
    泥炭质土c/kPa[26.6,27.8][24.3,30.04]
    φ/(°)[6.4,6.7][6.1,7.2]
    粉土c/kPa[16.6,17.2][15.6,18.6]
    φ/(°)[17.41,17.48][16.2,18.4]
    黏土c/kPa[29.2,30.6][28.7,32.1]
    φ/(°)[8.7,9.0][6.9,10.3]
    下载: 导出CSV

    表  5   不同区间站点参数指标选取值

    Table  5   Parameter values for different interval sites

    站点名称泥炭质土粉土黏土
    c/kPaφ/(°)c/kPaφ/(°)c/kPaφ/(°)
    河尾村站27.06.417.817.429.29.0
    迎海路站26.36.516.617.629.88.3
    滇池学院25.65.915.817.129.68.5
    下载: 导出CSV

    表  6   cφ值样本总数及分组情况

    Table  6   Total number and grouping of c and φ samples

    土类粉土黏土泥炭质土
    指标cφcφcφ
    样本总数/个230248540476269294
    第一组/个100100200200100100
    第二组/个200200400400200200
    第三组/个230248540476269294
    下载: 导出CSV

    表  7   力学参数均值和相合中心

    Table  7   Means and coincidence centers of mechanical parameters

    土类样本量正态分布峰值相合中心
    c/kPaφ/(°)ρc/kPaρφ/(°)
    黏土20028.7 29.4
    40029.1 29.4
    54029.4 29.4 
    粉土100 17.50 17.50
    200 17.47 17.50
    248 17.50 17.50
    下载: 导出CSV
  • [1]

    KEATON J R, PONNABOYINA H. Selection of geotechnical param eters using the statistics of small samples[J]. Geo- Congress, ASCE,2014, 234(1): 1532-1541.

    [2] 吴越, 刘东升, 孙树国, 等. 岩土强度参数正态-逆伽马分的最大后验估计[J]. 岩石力学与工程学报, 2019, 38(6): 1188-1196. https://www.cnki.com.cn/Article/CJFDTOTAL-YSLX201906010.htm

    WU Yue, LIU Dong-sheng, SUN Shu-guo, et al. Maximum a posteriori estimati on of normal-inverse gamma-series of geotechnical strength par ameters[J]. Chinese Journal of Rock Mechanics and Engineering, 2019, 38(6): 1188-1196. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YSLX201906010.htm

    [3] 宫凤强, 黄天朗, 李夕兵. 岩土抗剪强度参数的最优概率分布函数推断方法[J]. 岩土工程学报, 2016, 38(增刊2): 204-209. https://www.cnki.com.cn/Article/CJFDTOTAL-YTGC2016S2033.htm

    GONG Feng-qiang, HUANG Tian-lang, LI Xi-bing. Inference method of optimal probability distribution function for shear strength para meters of rock and soil[J]. Chinese Journal of Geotechnical Engineering, 2016, 38(S2): 204-209. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YTGC2016S2033.htm

    [4] 刘健, 陈亮, 王驹, 等. 二维K-S检验法在岩体统计均质区划分中的应用[J]. 岩土工程学报, 2019, 41(12): 2374-2380. https://www.cnki.com.cn/Article/CJFDTOTAL-YTGC201912033.htm

    LIU Jian, CHEN Liang, WANG Wei, et al. Application of two-dimensional K-S test method in statistical homogeneous zone division of rock mass[J]. Chinese Journal of Geotechnical Engineering, 2019, 41(12): 2374-2380. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YTGC201912033.htm

    [5] 朱唤珍, 李夕兵, 宫凤强. 大样本岩土参数概率分布的正态信息扩散推断[J]. 岩土力学, 2015, 36(11): 3275-3282. https://www.cnki.com.cn/Article/CJFDTOTAL-YTLX201511032.htm

    ZHU Huan-zhen, LI Xi-bing, GONG Feng-qiang. Inference of normal information diffusion for probability distribution of large sample geotechnical parameters[J]. Rock and Soil Mechanics, 2015, 36(11): 3275-3282. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YTLX201511032.htm

    [6]

    CONTRERAS L F, BROWN E T. Slope reliability and back analysis of failure with geotechnical parameters estim -ated using Bayesian inference[J]. Journal of Rock Mechanics and Geotechnical Engineering, 2019, 11(3): 628-643. doi: 10.1016/j.jrmge.2018.11.008

    [7]

    CONTRERAS L F, BROWN E T, RUEST M. Bayesian data analysis to quantify the uncertainty of intact rock strength[J]. Journal of Rock Mechanics and Geotechnical Engineering, 2018, 10(1): 11-31. doi: 10.1016/j.jrmge.2017.07.008

    [8] 阮永芬, 刘岳东. 昆明盆地粉土的特性研究与利用[J]. 岩土力学, 2003, 24(增刊2): 199-202. https://www.cnki.com.cn/Article/CJFDTOTAL-YTLX2003S2045.htm

    RUAN Yong-fen, LIU Yue-dong. Study and utilization of silt characteristics in Kunming Basin[J]. Rock and Soil Mechanics, 2003, 24(S2): 199-202. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YTLX2003S2045.htm

    [9] 岩土工程勘察规范:GB50021—2001[S]. 2009.

    Geotechnical Engineering Survey Specification: GB50021—2001[S]. 2009. (in Chinese)

    [10] 韦来生, 张伟平. 贝叶斯分析[M]. 北京: 中国科学技术大学出版, 2013.

    WEI La-sheng, ZHANG Wei-ping. Bayesian Analysis[M]. Beijing: University of Science and Technology of China, 2013. (in Chinese)

    [11] 茆诗松, 程依明, 濮晓龙. 概率论与数理统计教程习题与解答[M]. 北京: 高等教育出版, 2006.

    PEI Shi-song, CHENG Yi-ming, ZHAI Xiao-long. Exercises and Answers to Probability Theory and Mathematical Statistics Tutorials[M]. Beijing: Higher Education Publishing, 2006. (in Chinese)

    [12] 梁晓辉. 利用Fisher信息矩阵确定伽玛分布的无信息先验[J]. 新疆师范大学学报(自然科学版), 2007, 26(3): 19-21. https://www.cnki.com.cn/Article/CJFDTOTAL-XJSZ200703009.htm

    LIANG Xiao-hui. Determining the information-free prior of Gamma distribution using fisher information matrix[J]. Journal of Xinjiang Normal University (Natural Science Edition), 2007, 26(3): 19-21. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-XJSZ200703009.htm

    [13] 何基报, 茆诗松. 对数正态分布场合的BAYES分析和大样本的后验分布[J]. 应用概率统计, 1998, 14(3): 272-283. https://www.cnki.com.cn/Article/CJFDTOTAL-YYGN199803006.htm

    HE Ji-bao, PEI Shi-song. Bayes analysis of lognormal distribution and posterior distribution of large samples[J]. Applied Probability and Statistics, 1998, 14(3): 272-283. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YYGN199803006.htm

    [14] 黄超. 对数正态分布的参数估计[J]. 高等数学研究, 2015, 18(4): 4-6. https://www.cnki.com.cn/Article/CJFDTOTAL-XUSJ201504003.htm

    HUANG Chao. Parameter estimation of lognormal distribution[J]. Advanced Mathematics Research, 2015, 18(4): 4-6. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-XUSJ201504003.htm

图(4)  /  表(7)
计量
  • 文章访问数: 
  • HTML全文浏览量:  0
  • PDF下载量: 
  • 被引次数: 0
出版历程
  • 收稿日期:  2019-03-24
  • 网络出版日期:  2022-12-07
  • 刊出日期:  2020-02-29

目录

    /

    返回文章
    返回