• 全国中文核心期刊
  • 中国科技核心期刊
  • 美国工程索引(EI)收录期刊
  • Scopus数据库收录期刊

基于对数动骨架考虑可逆孔压的有效应力本构研究

董青, 周正华, 苏杰, 李小军, 郝冰, 李远东

董青, 周正华, 苏杰, 李小军, 郝冰, 李远东. 基于对数动骨架考虑可逆孔压的有效应力本构研究[J]. 岩土工程学报, 2020, 42(12): 2322-2329. DOI: 10.11779/CJGE202012020
引用本文: 董青, 周正华, 苏杰, 李小军, 郝冰, 李远东. 基于对数动骨架考虑可逆孔压的有效应力本构研究[J]. 岩土工程学报, 2020, 42(12): 2322-2329. DOI: 10.11779/CJGE202012020
DONG Qing, ZHOU Zheng-hua, SU Jie, LI Xiao-jun, HAO Bing, LI Yuan-dong. Constitutive model for effective stress based on logarithmic skeleton curve considering reversible pore pressure[J]. Chinese Journal of Geotechnical Engineering, 2020, 42(12): 2322-2329. DOI: 10.11779/CJGE202012020
Citation: DONG Qing, ZHOU Zheng-hua, SU Jie, LI Xiao-jun, HAO Bing, LI Yuan-dong. Constitutive model for effective stress based on logarithmic skeleton curve considering reversible pore pressure[J]. Chinese Journal of Geotechnical Engineering, 2020, 42(12): 2322-2329. DOI: 10.11779/CJGE202012020

基于对数动骨架考虑可逆孔压的有效应力本构研究  English Version

基金项目: 

国家自然科学基金项目 U1839202

国家重点研发计划项目 2017YFC1500400

详细信息
    作者简介:

    董青(1992—),女,博士研究生,主要从事岩土力学研究。E-mail:2458810997@qq.com

    通讯作者:

    李小军, E-mail:beerli@vip.sina.com

  • 中图分类号: TU43

Constitutive model for effective stress based on logarithmic skeleton curve considering reversible pore pressure

  • 摘要: 在对含饱和砂土场地进行地震反应分析时,等效线性化方法难以模拟饱和砂土的孔压变化,且适用的有效应力本构也相对较少,相关本构的模拟结果亦缺乏与实际饱和砂土场地观测台阵地震动记录的对比验证。从一维饱和砂土场地时域非线性地震反应分析出发,基于对数动骨架曲线时域非线性土体动本构和陈龙伟孔压增长模型,并考虑可逆超静孔隙水压力,得到了可用于饱和砂土场地地震液化反应分析的时域非线性有效应力本构。这一本构能合理的模拟饱和砂土层在地震动作用下的孔压波动变化,以及孔压增长引起的土体软化现象,其孔压模拟结果更符合实际孔压发展过程。通过自行编制的一维土层地震反应分析程序Soilresp1D,实现了可液化场地动力反应分析。含饱和松砂场地地震反应分析本构数值模拟结果与基于丰万玲孔压增长模型的有效应力本构的时域分析结果和实际观测场地地震动记录对比表明,提出的基于对数动骨架曲线并考虑可逆超静孔隙水压力的有效应力本构是可行的且结果合理。此外,通过对含饱和砂土层场地地震反应分析,揭示了液化对场地地表加速度峰值和反应谱及饱和砂土层抗剪强度的影响特征。
    Abstract: The equivalent linearization method which is often used for seismic response analysis is difficult to simulate the variation of the pore pressure of saturated sandy soil, and there are few constitutive models. Almost the existing constitutive models for effective stress have not been verified by the observed records of strong motion in actual liquefiable sites. A time-domain nonlinear constitutive model for effective stress which is used in the time-domain one-dimensional nonlinear seismic response analysis of liquefiable sites with saturated sand is obtained based on the logarithmic dynamic skeleton curve, Chen long-wei's hole pressure growth model and reversible overstatic pore water pressure. The constitutive model can reasonably simulate the variation of pore pressure of saturated sand layer under the action of strong motion and the softening characteristics of soils caused by the increase of pore pressure, and is also embedded in the program Soilresp1D to realize the dynamic response analysis of liquefiable soil layer sites. It can be seen from the comparison among the simulated results of liquefiable site with saturated sand by the proposed time-domain nonlinear constitutive model for effective stress of and those by Feng Wan-ling's pore pressure growth model and the strong ground motion records of the actual liquefiable sites that the constitutive model for effective stress based on the logarithmic dynamic skeleton curve and the reversible overstatic pore water pressure is feasible, and the numerical simulated results are reasonable. In addition, by the seismic response of the site with saturated sand layers, the effects of liquefaction on the peak and the response spectra of ground acceleration and shear strength of the saturated sand layers are analyzed, and the characteristics of influence are discussed.
  • 图  1   饱和砂土不排水循环三轴试验过程中孔压变化

    Figure  1.   Variation of pore pressure of saturated sand by undrained cyclic triaxial tests

    图  2   基于本文本构模拟试验模型中饱和砂土的动力反应

    Figure  2.   Stress-strain curves and simulated results of variation of pore pressure based on constitutive model for effective stress

    图  3   输入地震动时程和两种有效应力本构的场地地震反应

    Figure  3.   Time histories of input ground motion and seismic responses of two constitutive models for effective stress

    图  4   本文方法模拟液化与未液化饱和砂土层应力-应变关系曲线

    Figure  4.   Simulated results of stress-strain relationship curves between liquefied and unliquefied saturated sand

    图  5   实测基岩地震动加速度时程和场地剪切波速随深度的变化

    Figure  5.   Time histories of measured bedrock acceleration and variation of shear wave velocity with depth

    图  6   数值模拟结果与观测结果

    Figure  6.   Simulated and observed results

    表  1   场地计算模型参数

    Table  1   Model parameters for site salulation

    土类深度/m剪切波速/(m·s-1)密度/(t·m-3)b/aa1 /(10-3)b1
    黏土6120.0~142.21.9511600.825.9
    细砂9142.2~153.31.4919342.245.2
    黏土30153.3~231.01.9511600.825.9
    基岩32511.02.65   
    下载: 导出CSV

    表  2   场地计算模型参数

    Table  2   Model parameters for site calculation

    土类层厚/m深度/m密度/(t·m-3)b/aa1 /(10-3)b1
    松细砂26261.9217117.183.717
    黏土12381.6815273.734.331
    松细砂22601.9210518.364.245
    中密砂401001.6870910.534.081
    基岩2 1.92   
    下载: 导出CSV
  • [1]

    MASING G. Intrinsic stresses and solidification in the brass[C]//Proceedings of Second International Congress of Applied Mechanics, 1926, Zurich. (in Germany

    [2]

    ROSENBLUETH, E. On a kind of hysteretic damping[J]. Journal of the Engineering Mechanics Division, ASCE, 1964, 90(4): 37-47. doi: 10.1061/JMCEA3.0000510

    [3]

    NEWMARK N M, ROSENBLUETH E. Fundarnentais of Earthquake Engineering[M]. EngiewoodCliffs: Prentice-Hall, 1971: 163-192.

    [4] 赵丁凤, 阮滨, 陈国兴. 基于Davidenkov骨架曲线模型的修正不规则加卸载准则与等效剪应变算法及其验证[J]. 岩土工程学报, 2017, 39(5): 888-895. https://www.cnki.com.cn/Article/CJFDTOTAL-YTGC201705018.htm

    ZAO Ding-feng, RUAN Bing, CHEN Guo-xing. Validation of the modified irregular loading-reloading rules based on Davidenkov skeleton curve and its equivalent shear strain algorithm implemented in ABAQUS[J]. Chinese Journal of Geotechnical Engineering, 2017, 39(5): 888-895. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YTGC201705018.htm

    [5] 王志良, 韩清宇. 黏弹塑性土层地震反应的波动分析法[J]. 地震工程与工程学报, 1981, 1(1): 117-137. https://www.cnki.com.cn/Article/CJFDTOTAL-DGGC198101010.htm

    WANG Zhi-liang, HAN Qing-yu. Analysis of wave propagation for the site seismic response, using the visco- elastoplasticmodel[J]. Earthquake Engineering and Engineering Vibration, 1981, 1(1): 117-137. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-DGGC198101010.htm

    [6] 李小军. 土的动力本构关系的一种简单函数表达式[J]. 岩土工程学报, 1992, 14(5): 90-94. doi: 10.3321/j.issn:1000-4548.1992.05.013

    LI Xiao-jun. A simple functional formula of dynamic constitutive models of saturated soils[J]. Chinese Journal of Geotechnical Engineering, 1992, 14(5): 90-94. (in Chinese) doi: 10.3321/j.issn:1000-4548.1992.05.013

    [7] 李小军, 廖振鹏, 张克绪. 考虑阻尼拟合的动态骨架曲线函数式[J]. 地震工程与工程振动, 1994, 14(1): 30-35. https://www.cnki.com.cn/Article/CJFDTOTAL-DGGC199401004.htm

    LI Xiao-jun, LIAO Zheng-peng, ZHANG Ke-xu. A functional formula of dynamic skeleton curve taking account of damping effect[J]. Earthquake Engineering and Engineering Vibration, 1994, 14(1): 30-35. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-DGGC199401004.htm

    [8] 董青, 苏杰, 周正华. 基于对数骨架曲线的时域本构及其应用[J]. 岩土工程学报, 2020, 42(8): 1491-1498. https://www.cnki.com.cn/Article/CJFDTOTAL-YTGC202008020.htm

    DONG Qing, SU Jie, ZHOU Zheng-hua. The time domain constitutive based on logarithmic skeleton curve and its application in seismic response calculation[J]. Chinese Journal of Geotechnical Engineering, 2020, 42(8): 1491-1498. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YTGC202008020.htm

    [9]

    SEED H B. Pore-Water Pressure Changes during Soil Liquefaction[J]. Journal of Geotechnical Engineering Division, ASCE, 1976, 102(5): 323-345.

    [10]

    ISHIBASHI M A, TSUCHIYA SHERIF C.. Pore-pressure rise mechanism and soil liquefaction[J]. Soils and Foundations, 1977, 17(2): 18-26.

    [11] 孙锐, 袁晓铭. 非均等固结下饱和砂土孔压增量简化计算公式[J]. 岩土工程学报, 2005, 27(9): 1021-1025. https://www.cnki.com.cn/Article/CJFDTOTAL-YTGC200509009.htm

    SUN Rui, YUAN Xiao-ming. Simplified incremental formula for estimating pore water pressure of saturated sands underanisotropic consolidation[J]. Chinese Journal of Geotechnical Engineering, 2005, 27(9): 1021-1025. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YTGC200509009.htm

    [12] 陈龙伟, 袁晓铭, 孙锐. 适于水平场地孔压发展的增量计算模型[J]. 应用基础与工程科学学报, 2010, 18(2): 190-198. https://www.cnki.com.cn/Article/CJFDTOTAL-YJGX2010S1026.htm

    CHEN Long-wei, YUAN Xiao-ming, SUN Rui. An incremental pore-water pressure buildup model for horizontal soil strata[J]. Journal of Basic Science and Engineering, 2010, 18(2): 190-198. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YJGX2010S1026.htm

    [13] 付海清, 袁晓铭, 王淼. 基于现场液化试验的饱和砂土孔压增量计算模型[J]. 岩土力学, 2018, 39(5): 1612-1618. https://www.cnki.com.cn/Article/CJFDTOTAL-YTLX201805008.htm

    FU Hai-qing, YUAN Xiao-ming, WANG Miao. An incremental model of pore pressure for saturated sand based on in-situ liquefaction test[J]. Rock and Soil Mechanics, 2018, 39(5): 1612-1618. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YTLX201805008.htm

    [14] 孙锐, 李晓飞, 陈龙伟. 孔压增长下双曲线模型参数研究[J]. 振动与冲击, 2018, 37(7): 1-7. https://www.cnki.com.cn/Article/CJFDTOTAL-ZDCJ201807002.htm

    SUN Rui, LI Xiao-fei, CHEN Long-wei. Effects of increase in pore water pressure on dynamic parameters of hyperbolic model describing stress- strain relation of liquefiable soil[J]. Journal of Vibration and Shock, 2018, 37(7): 1-7. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-ZDCJ201807002.htm

    [15] 丰万玲, 石兆吉. 判别水平土层液化势的孔隙水压力分析方法[J]. 工程抗震, 1988, 4: 30-34. https://www.cnki.com.cn/Article/CJFDTOTAL-GCKZ198804006.htm

    FENG Wang-Ling, SHI Zhao-Ji. Method of pore water pressure analysis for discrimination of liquefaction potential of horizontal layer[J]. Earthquake Resistant Engineering, 1988, 4: 30-34. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-GCKZ198804006.htm

    [16] 石兆吉, 郁寿松. 砂性土剪切波速与液化强度的关系[J]. 世界地震工程, 1991(3): 16-23. https://www.cnki.com.cn/Article/CJFDTOTAL-SJDC199103001.htm

    SHI Zhao-Ji, YU Shuo-Song. Sandy soil shear wave velocity and liquefaction strength[J]. Journal of the World Earthquake Engineering, 1991(3): 16-23. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-SJDC199103001.htm

    [17] 孙锐, 赵倩玉, 袁晓铭. 液化与非液化场地加速度反应谱对比[J]. 岩土力学, 2014, 35(1): 300-305. https://www.cnki.com.cn/Article/CJFDTOTAL-YTLX2014S1043.htm

    SUN Rui, ZHAO Qian-Yu, YUAN Xiao-ming. Comparison between acceleration response spectra on liquefaction and non- liquefaction sites[J]. Rock and Soil Mechanics, 2014, 35(1): 300-305. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YTLX2014S1043.htm

    [18] 孙锐, 袁晓铭. 适于不同深度土层液化的剪切波速判别公式[J]. 岩土工程学报, 2019, 41(3): 440-447. https://www.cnki.com.cn/Article/CJFDTOTAL-YTGC201903006.htm

    SUN Rui, YUAN Xiao-ming. Depth-consistent vs-based approach for soil liquefaction evaluation[J]. Chinese Journal of Geotechnical Engineering, 2019, 41(3): 440-447. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YTGC201903006.htm

图(6)  /  表(2)
计量
  • 文章访问数:  257
  • HTML全文浏览量:  20
  • PDF下载量:  109
  • 被引次数: 0
出版历程
  • 收稿日期:  2020-03-08
  • 网络出版日期:  2022-12-05
  • 刊出日期:  2020-11-30

目录

    /

    返回文章
    返回