• 全国中文核心期刊
  • 中国科技核心期刊
  • 美国工程索引(EI)收录期刊
  • Scopus数据库收录期刊

基于拉丁超立方抽样的边坡可靠度分析非侵入式随机有限元法

蒋水华,李典庆,周创兵

蒋水华,李典庆,周创兵. 基于拉丁超立方抽样的边坡可靠度分析非侵入式随机有限元法[J]. 岩土工程学报, 2013, 35(zk2): 70-76.
引用本文: 蒋水华,李典庆,周创兵. 基于拉丁超立方抽样的边坡可靠度分析非侵入式随机有限元法[J]. 岩土工程学报, 2013, 35(zk2): 70-76.
JIANG Shui-hua1, 2, LI Dian-qing1, 2, ZHOU Chuang-bing1, 2. Non-intrusive stochastic finite element method for slope reliability analysis based on Latin hypercube sampling[J]. Chinese Journal of Geotechnical Engineering, 2013, 35(zk2): 70-76.
Citation: JIANG Shui-hua1, 2, LI Dian-qing1, 2, ZHOU Chuang-bing1, 2. Non-intrusive stochastic finite element method for slope reliability analysis based on Latin hypercube sampling[J]. Chinese Journal of Geotechnical Engineering, 2013, 35(zk2): 70-76.

基于拉丁超立方抽样的边坡可靠度分析非侵入式随机有限元法  English Version

基金项目: 国家杰出青年科学基金项目(51225903)
详细信息
    作者简介:

    蒋水华,李典庆,周创兵: 蒋水华(1987- ),男,江西九江人,博士研究生,主要从事岩土工程可靠度和风险分析方面的研究。E-mail: jiangshuihua-2008@163.com。

  • 中图分类号: TU47

Non-intrusive stochastic finite element method for slope reliability analysis based on Latin hypercube sampling

  • 摘要: 提出了基于拉丁超立方抽样的边坡可靠度分析非侵入式随机有限元法。采用有限元滑面应力法计算边坡稳定安全系数,通过Hermite随机多项式展开拟合边坡安全系数与输入随机变量间隐式函数关系,采用拉丁超立方抽样技术产生配点计算随机多项式展开系数。研究了该方法在锦屏I级水电站左岸边坡稳定可靠度分析中的应用。结果表明:基于拉丁超立方抽样的非侵入式随机有限元法实现了边坡可靠度分析和边坡稳定有限元分析过程不耦合,该方法计算精度高,为复杂高陡边坡可靠度问题求解提供了一条有效的途径。基于拉丁超立方抽样技术计算随机多项式展开系数,所需样本点数目约等于待定系数数目,其计算效率高于常用的概率配点方法。锦屏I级左岸边坡断层f42-9的内摩擦角敏感性程度最大,它对边坡稳定性具有重要的影响,其次为III2类岩体的内摩擦角,其余变量对边坡稳定性影响不明显。表征输入参数敏感性的Sobol指标为边坡加固方案的制定提供了参考依据。
    Abstract: A non-intrusive stochastic finite element method based on the Latin hypercube sampling for slope reliability analysis is proposed. The finite element method for stress analysis of sliding surface is used to calculate the safety factor of slopes. The safety factor of slopes is explicitly expressed as the input random variables using the Hermite polynomial chaos expansion. The Latin hypercube sampling points are selected as the collocation points to calculate the coefficients of polynomial chaos expansion. An example of reliability analysis of natural slope at the left abutment of Jinping I Hydropower Station is presented to demonstrate the validity and capability of the proposed method. The results indicate the proposed non-intrusive stochastic finite element method based on the Latin hypercube sampling can effectively evaluate the reliability of high-steep rock slopes, which decouples the reliability analysis with finite element analysis of slope stability and produces sufficiently accurate reliability results. The coefficients of polynomial chaos expansion determined by the Latin hypercube sampling are more effective than those by the frequently-used probabilistic collocation method, since the number of sampling points required by the former are only approximately equal to that of unknown coefficients. The internal fiction angle of fault f42-9 at Jinping left abutment slope has a significant effect on the slope stability due to its largest sensitivity, followed by the internal fiction angle of III2 class rock mass, whereas the other variables affect the slope stability slightly. The Sobol’s indices used for representing the sensitivities of input uncertain parameters can provide a referential basis for working out the reinforcement schemes.
  • [1] LOW B K. Efficient probabilistic algorithm illustrated for a rock slope[J]. Rock Mechanics and Rock Engineering, 2008, 41(5): 715-734.
    [2] LI A J, CASSIDY M J, WANGA Y, et al. Parametric Monte Carlo studies of rock slopes based on the Hoek-Brown failure criterion[J]. Computers and Geotechnics, 2012, 45: 11-18.
    [3] TANG X S, LI D Q, CHEN Y F, et al. Improved knowledge-based clustered partitioning approach and its application to slope reliability analysis[J]. Computers and Geotechnics, 2012, 45: 34-43.
    [4] PARK H J, UM J G, WOO I, et al. The evaluation of the probability of rock wedge failure using the point estimate method[J]. Environmental Earth Sciences, 2012, 65(1): 353-361.
    [5] 高 谦, 王思敬. 龙滩水电站船闸高边坡的可靠度分析[J]. 岩石力学与工程学报, 1991, 10(1): 83-95. (GAO Qian, WANG Si-jing. A reliability analysis of high rock slope for the Longtan hydropower project[J]. Chinese Journal of Rock Mechanics and Engineering, 1991, 10(1): 83-95. (in Chinese))
    [6] 李典庆, 周创兵, 陈益峰, 等. 边坡可靠度分析的随机响应面法及程序实现[J]. 岩石力学与工程学报, 2010, 29(8): 1513-1523. (LI Dian-qing, ZHOU Chuang-bing, CHEN Yi-feng, et al. Reliability analysis of slope using stochastic response surface method and code implementation[J]. Chinese Journal of Rock Mechanics and Engineering, 2010, 29(8): 1513-1523. (in Chinese))
    [7] BERVEILLER M, SUDRET B, LEMAIRE M. Stochastic finite elements: a non intrusive approach by regression[J]. European Journal of Computational Mechanics, 2006, 15(1/2/3): 81-92.
    [8] 李典庆, 蒋水华, 周创兵. 基于非侵入式随机有限元法的地下洞室可靠度分析[J]. 岩土工程学报, 2012, 34(1): 123-129. (LI Ding-qing, JIANG Shui-hua, ZHOU Chuang-bing. Reliability analysis of underground rock caverns using non-intrusive stochastic finite element method[J]. Chinese Journal of Geotechnical Engineering, 2012, 34(1): 123-129. (in Chinese))
    [9] ISUKAPALLI S S. Uncertainty analysis of transport transformation models[D]. New Jersey: The State University of New Jersey, New Brunswick, 1999.
    [10] 蒋水华, 李典庆, 周创兵. 随机响应面法最优概率配点数目分析[J]. 计算力学学报, 2012, 29(3): 345-351. (JIANG Shui-hua, LI Dian-qing, ZHOU Chuang-bing. Optimal probabilistic collocation points for stochastic response surface method[J]. Chinese Journal of Computational Mechanics, 2012, 29(3): 345-351. (in Chinese))
    [11] MCKAY M D, CONOVER W J, BECKMAN R J. A comparison of three methods for selecting values of input variables in the analysis of output from a computer code[J]. Technometrics, 1979, 21(2): 239-245.
    [12] CHOI S K, CANFIELD R, GRANDHI R, PETTIT C. Polynomial chaos expansion with Latin hypercube sampling for estimating response variability[J]. AIAA Journal, 2004, 42(6): 1191-1198.
    [13] CHOI S K, CANFIELD R A, GRANDHI R V. Estimation of structural reliability for Gaussian random fields[J]. Structure and Infrastructure Engineering, 2006, 2(3/4): 161-173.
    [14] 吴振君, 王水林, 葛修润. LHS方法在边坡可靠度分析中的应用[J]. 岩土力学, 2010, 31(4): 1047-1054. (WU Zhen-jun, WANG Shui-lin, GE Xiu-run. Application of Latin hypercube sampling technique to slope reliability analysis[J]. Rock and Soil Mechanics, 2010, 31(4): 1047-1054. (in Chinese))
    [15] 马建全, 李广杰, 徐佩华, 等. 基于拉丁方抽样及K-S检验的边坡可靠性分析[J]. 岩土力学, 2011, 32(7): 2153-2156. (MA Jian-quan, LI Guang-jie, XU Pei-hua, et al. Reliability analysis of slope with Latin hypercube sampling and K-S test[J]. Rock and Soil Mechanics, 2011, 32(7): 2153-2156. (in Chinese))
    [16] MOLLON G, DIAS D, SOUBRA A H. Probabilistic analysis of pressurized tunnels against face stability using collocation-based stochastic response surface method[J]. Journal of Geotechnical and Geoenvironmental Engineering, 2011, 137(4): 385-397.
    [17] 周创兵, 姜清辉. 锦屏一级水电站枢纽区左岸工程边坡变形与稳定性分析研究[R]. 武汉: 武汉大学, 2010. (ZHOU Chuang-bing, JIANG Qing-hui. Research on deformation and stability analysis for the left high slope in the dam site of Jinping I hydropower station[R]. Wuhan: Wuhan University, 2010. (in Chinese))
    [18] 国家电力公司成都勘测设计研究院. 雅砻江锦屏一级水电站可行性研究报告(3): 工程地质[R]. 成都: 国家电力公司成都勘测设计研究院, 2003. (Chengdu Hydroelectric Investigation and Design Institute, State Power Corporation of China. Feasibility study report on Jinping I Hydropower Station (3): engineering geology[R]. Chengdu: Chengdu Hydroelectric Investigation and Design Institute, State Power Corporation of China, 2003. (in Chinese))
    [19] ZOU J Z, WILLIANS D J, XIONG W L. Search for critical slip surfaces based on finite element method[J]. Canadian Geotechnical Journal, 1995, 32(2): 233-246.
    [20] GEO-SLOPE International Ltd. Stability modeling with SLOPE/W 2007 Version: an engineering methodology[M]. Calgary: GEO-SLOPE International Ltd., 2010.
    [21] GEO-SLOPE International Ltd. Stress-Deformation Modeling with SIGMA/W 2007 Version: an engineering methodology[M]. Calgary: GEO-SLOPE International Ltd., 2010.
  • 期刊类型引用(14)

    1. 侯公羽,邵耀华,张世欧,赵铁林,刘春雷. 锚杆预紧力对锚固岩体力学性能改善的试验研究. 岩石力学与工程学报. 2025(02): 261-275 . 百度学术
    2. 李军臣,吴拥政,付玉凯,何思锋,孙卓越,周鹏赫. 加锚煤样动态力学性能及变形破坏机制试验研究. 岩石力学与工程学报. 2025(04): 912-925 . 百度学术
    3. 李豪逸,左双英,陈世万,杨冲,田娇. 含层理加锚灰岩单轴压缩力学特性及变形全过程统计损伤模型. 工程地质学报. 2024(02): 481-491 . 百度学术
    4. 李庆文,禹萌萌,高森林,刘艺伟,曹行,曾杏钢,黄筱. 加载速率对碳纤维布被动约束煤能量演化的影响. 煤炭学报. 2024(S1): 236-247 . 百度学术
    5. 梁东旭,张农,荣浩宇. 基于锚固剂环裂纹扩展的全长锚固脱黏失效机制研究. 岩石力学与工程学报. 2023(04): 948-963 . 百度学术
    6. 韦四江,翟黎伟,王猛,高继耀,王生柱,李鑫鹏. 不同速率加锚煤样抗拉力学响应特征试验研究. 采矿与安全工程学报. 2023(03): 458-466 . 百度学术
    7. 陈绍杰,冯帆,李夕兵,王成,李地元,ROSTAMI Jamal,朱泉企. 复杂开采条件下深部硬岩板裂化破坏试验与模拟研究进展和关键问题. 中国矿业大学学报. 2023(05): 868-888 . 百度学术
    8. 宋硕,任富强,常来山. 含预应力锚杆煤岩组合体破坏及声发射特征试验研究. 岩土力学. 2023(S1): 449-460 . 百度学术
    9. 谭嘉诺,王斌,冯涛,宁勇,刘备备,赵伏军. 单轴压缩条件下加锚砂岩声发射特性及其与岩爆的联系. 中南大学学报(自然科学版). 2021(08): 2828-2838 . 百度学术
    10. 邱鹏奇,宁建国,王俊,杨尚,胡善超,谭云亮,韦欣,闫顺尚. 冲击动载作用下加锚岩体抗冲时效试验研究. 煤炭学报. 2021(11): 3433-3444 . 百度学术
    11. 余伟健,吴根水,刘泽,黄钟,刘芳芳,任恒. 煤-岩-锚组合锚固体单轴压缩试验及锚杆力学机制. 岩石力学与工程学报. 2020(01): 57-68 . 百度学术
    12. 曾佳君,张志军,张栩栩,蒲成志. 张开度影响的水平裂隙类岩试件破断试验与分析. 岩土工程学报. 2020(03): 523-532 . 本站查看
    13. 吴拥政,付玉凯,郝登云. 加锚岩体侧向冲击载荷下动力响应规律研究. 岩石力学与工程学报. 2020(10): 2014-2024 . 百度学术
    14. 王斌,宁勇,冯涛,郭泽洋. 低应变率加载速度影响脆性岩体锚固效果的试验研究. 煤炭学报. 2019(09): 2691-2699 . 百度学术

    其他类型引用(19)

计量
  • 文章访问数:  459
  • HTML全文浏览量:  5
  • PDF下载量:  423
  • 被引次数: 33
出版历程
  • 收稿日期:  2013-06-05
  • 发布日期:  2013-11-24

目录

    /

    返回文章
    返回