• Scopus数据库收录期刊
  • 中国科技核心期刊
  • 全国中文核心期刊
  • 美国工程索引(EI)收录期刊

不排水升温–降温过程引起的饱和粉质黏土的热力学响应

白冰, 刘文秀, 史晓英, 杨海朋

白冰, 刘文秀, 史晓英, 杨海朋. 不排水升温–降温过程引起的饱和粉质黏土的热力学响应[J]. 岩土工程学报, 2012, 34(10): 1781-1786.
引用本文: 白冰, 刘文秀, 史晓英, 杨海朋. 不排水升温–降温过程引起的饱和粉质黏土的热力学响应[J]. 岩土工程学报, 2012, 34(10): 1781-1786.
BAI Bing, LIU Wen-xiu, SHI Xiao-ying, YANG Hai-peng. Thermo-mechanical responses of saturated silty soil to undrained heating-cooling cycles[J]. Chinese Journal of Geotechnical Engineering, 2012, 34(10): 1781-1786.
Citation: BAI Bing, LIU Wen-xiu, SHI Xiao-ying, YANG Hai-peng. Thermo-mechanical responses of saturated silty soil to undrained heating-cooling cycles[J]. Chinese Journal of Geotechnical Engineering, 2012, 34(10): 1781-1786.

不排水升温–降温过程引起的饱和粉质黏土的热力学响应  English Version

基金项目: 国家自然科学基金项目(50978022;51279002);中央高校基本科研业务费专项基金项目(2011YJS248)
详细信息
    作者简介:

    白 冰(1966– ),男,博士,教授,博士生导师。现主要从事复杂环境条件下岩土介质力学特性的研究。

  • 中图分类号: TU43

Thermo-mechanical responses of saturated silty soil to undrained heating-cooling cycles

  • 摘要: 通过室内试验,研究不排水条件下反复升温–降温过程引起的饱和粉质黏土的热力学响应。研究表明,在饱和粉质黏土升温–降温的整个作用过程中,试样的温度变化过程在每一个循环内是一致的,而与围压和温度循环次数无关。在每个循环的温度升高过程中,孔隙水压力不断增大并趋于稳定值,且增长趋势类似。同时,归一化最大孔隙水压力随循环次数的增加而增大。在降温过程中,随着温度循环次数的增加,归一化孔隙水压力下降的速率似乎减慢,而残余孔隙水压力则逐渐增大。此外,随着围压的增大,归一化残余孔隙水压力有减小的趋势。随着温度升高,孔隙水和固体颗粒的热膨胀效应导致试样的体积明显增大,而当温度下降时,试样的体积又不断减小并趋于零。
    Abstract: The thermal-mechanical responses of saturated silty soil to heating-cooling cycles under undrained condition are discussed. The test results show that the variation tendency in the temperature of a specimen is almost consistent with each other in each period of repeated thermal loading, which is independent of confining pressure and cyclic number. The pore pressure increases gradually with the rise in the temperature of the specimen, and furthermore the variation tendency of pore pressure is also similar in each period. Under the same confining pressure, the normalized maximum pore pressure increases as the number of repeated thermal loading increases. In the process of temperature dropping, as the repeated number increases, the normalized pore pressure seems to descend more slowly, while the normalized residual pore pressure increases. Besides, the normalized pore pressure shows a decreasing tendency with the increase of confining pressure. As the temperature increases, the volume of the specimen increases due to the expansion of solid grains and pore water. When the temperature descends, the volume of the specimen begins to decrease gradually and tends to be zero.
  • [1] BURGHIGNOLI A, DESIDERI A, MILIZIANO S. A laboratory study on the thermomechanical behaviour of clayey soils[J]. Canidian Geotechnical Journal, 2000, 37(4): 764–780.
    [2] CEKEREVAC C, LALOUI L, VULLIET L. A novel triaxial apparatus for thermo-mechanical testing of soils[J]. Geotechnical Testing Journal, 2005, 28(2): 161–170.
    [3] BAI Bing. Fluctuation responses of saturated porous media subjected to cyclic thermal loading[J]. Computers and Geotechnics, 2006, 33(4): 396?403
    [4] ABUEL H M, BERGADO D T, BOUAZZA A. Volume change behaviour of saturated clays under drained heating conditions: experimental results and constitutive modeling[J]. Canadian Geotechnical Journal, 2007, 44(8): 942–956.
    [5] YILMAZ G. The effects of temperature on the characteristics of kaolinite and bentonite[J]. Scientific Research and Essays, 2011, 6(9): 1928–1939.
    [6] MONFARED M, DELAGE P, SULEM J, et al. A new hollow cylinder triaxial cell to study the behavior of geo-materials with low permeability[J]. International Journal of Rock Mechanics and Mining Sciences, 2011, 48: 637–649.
    [7] RICE J R. Heating and weakening of faults during earthquake slip[J]. Journal of Geophysical Research, 2006, 111(5): 311–316.
    [8] GHABEZLOO S, SULEM J. Temperature induced pore fluid pressurization in geomaterials[J]. Italian Geotechnical Journal, 2010, 1: 29–43
    [9] KHALILI N, UCHAIPICHAT A, JAVADI A A. Skeletal thermal expansion coefficient and thermo-hydro-mechanical constitutive relations for saturated homogeneous porous media[J]. Mechanics of Materials, 2010, 42: 593–598
    [10] 姚仰平, 杨一帆, 牛 雷. 考虑温度影响的UH模型[J]. 中国科学, 2011, 41(2): 158–169. (YAO Yang-ping, YANG Yi-fan, NIU Lei. UH model considering temperature effects[J]. Science in China, 2011, 41(2): 158–169. (in Chinese))
    [11] CUI Y J, LU Y F, DELAGE P. Field simulation of in situ water content and temperature changes due to ground-atmospheric interactions[J]. Géotechnique, 2005, 55(7): 557–567.
    [12] 白 冰, 陈星欣. 一种用于饱和土的热固结试验装置及其应用[J]. 岩土工程学报, 2011, 33(6): 896–900. (BAI Bing, CHEN Xing-xin. A test apparatus for the thermal consolidation of saturated soil and its application[J]. Chinese Journal of Geotechnical Engineering, 2011, 33(6): 896–900. (in Chinese))
    [13] ZHOU Y, RAJAPAKSE R K N D, GRAHAM J. Coupled consolidation of a porous medium with a cylindrical or a spherical cavity[J]. International Journal for Numerical and Analytical Methods in Geomechanics, 1998, 22(6): 449–475.
    [14] Abuel-Naga H M, BERGADO D T, BOUAZZA A,et al. Thermal conductivity of soft Bangkok clay from laboratory and field measurements[J]. Engineering Geology, 2009, 105: 211–219.
计量
  • 文章访问数: 
  • HTML全文浏览量:  0
  • PDF下载量: 
  • 被引次数: 0
出版历程
  • 收稿日期:  2011-09-14
  • 发布日期:  2012-11-13

目录

    /

    返回文章
    返回