• 全国中文核心期刊
  • 中国科技核心期刊
  • 美国工程索引(EI)收录期刊
  • Scopus数据库收录期刊

高放废物地质处置库中缓冲回填材料的收缩特征

唐朝生, 施斌, 崔玉军

唐朝生, 施斌, 崔玉军. 高放废物地质处置库中缓冲回填材料的收缩特征[J]. 岩土工程学报, 2012, 34(7): 1192-1200.
引用本文: 唐朝生, 施斌, 崔玉军. 高放废物地质处置库中缓冲回填材料的收缩特征[J]. 岩土工程学报, 2012, 34(7): 1192-1200.
TANG Chao-sheng, SHI Bin, CUI Yu-jun. Shrinkage characteristics of buffer-backfilling materials in high-level radioactive waste geological disposal[J]. Chinese Journal of Geotechnical Engineering, 2012, 34(7): 1192-1200.
Citation: TANG Chao-sheng, SHI Bin, CUI Yu-jun. Shrinkage characteristics of buffer-backfilling materials in high-level radioactive waste geological disposal[J]. Chinese Journal of Geotechnical Engineering, 2012, 34(7): 1192-1200.

高放废物地质处置库中缓冲回填材料的收缩特征  English Version

基金项目: 国家自然科学基金项目(41072211);高等学校博士学科点专项科研基金(新教师基金课题)(20090091120037);中国矿业大学深部岩土力学与地下工程国家重点实验室开放基金项目(SKLGDUEK1008)
详细信息
    作者简介:

    唐朝生(1980– ),男,博士,副教授,主要从事工程地质和环境岩土工程方面的研究工作,E-mail: tangchaosheng@nju.edu.cn。

  • 中图分类号: TU411

Shrinkage characteristics of buffer-backfilling materials in high-level radioactive waste geological disposal

  • 摘要: 缓冲回填材料的收缩特征对高放废物处置库的安全性和稳定性有重要影响。以COx泥岩缓冲回填材料为研究对象,采用不同的试验方法分别研究了饱和的压实试样和糊状试样在干燥过程中的体积收缩变形特征。试验结果表明:压实试样的体积收缩变形特征受初始干密度的影响比较明显,缩限、收缩系数和收缩应变均随初始干密度的增加而减小;压实试样的体积收缩存在明显的各向异性,在低压实度条件下,径向收缩大于轴向收缩,收缩几何因子大于3,在高密度条件下,轴向收缩大于径向收缩,收缩几何因子小于3;糊状试样的体积收缩过程可分为正常收缩、残余收缩和零收缩3个阶段,且绝大部分体积收缩变形发生在试样变为非饱和之前;相对于其他收缩模型,G&C模型对COx糊状试样收缩曲线的拟合精度最高。
    Abstract: The shrinkage characteristics of buffer-backfilling materials play an important role in the security and stability of the high-level radioactive waste geological disposal system. COx argillite is considered as a kind of potential buffer-backfilling materials in France. In this investigation, both the initially saturated compacted COx specimens and the paste-like COx specimens are prepared and subjected to different test methods to study their volumetric shrinkage behaviours. For the compacted specimens, it is found that the volumetric shrinkage deformation is significantly influenced by the initial dry density; the shrinkage limit, shrinkage efficiency and shrinkage strain decrease with the increasing dry density; in addition, it is observed that the shrinkage direction of specimens shows obvious anisotropism. For example, at low degree of compaction, the radial shrinkage strain is higher than axial shrinkage strain, and the shrinkage geometry factor is larger than 3; however, the contrary results are obtained at high degree of compaction. For the paste-like specimens, three shrinkage stages can be distinguished: normal shrinkage, residual shrinkage and zero shrinkage; most of the volume shrinkage deformation occurs before the air-entry point while the soil is still fully saturated. A group of four general shrinkage models are employed to fit the shrinkage curve of the paste-like specimens. The results show that the G & C model can get the highest performance for the present soil.
  • [1] 王 驹. 高放废物处置: 进展与挑战[J]. 中国工程科学, 2008, 10(3): 58–65. (WANG Ju. Geological disposal of high level radio active waste: progress and challenges[J]. Chinese Academy of Engineering, 2008, 10(3): 58–65. (in Chinese))
    [2] 苏 坤, LEBON P. 法国ANDRA放射性废物地质处置可行性研究综述[J]. 岩石力学与工程学报, 2006, 25(4): 814–824. (SU Kun, LEBON P. ANDRA’s feasibility study on deep geological disposal of high-level long-lived radio active waste[J]. Chinese Journal of Rock Mechnics and Engineering, 2006, 25(4): 814–824. (in Chinese))
    [3] PUPPALA A J, KATHA B, HOYOS L R. Volumetric shrinkage strain measurements in expansive soils using digital imaging technology[J]. Geotechnical Testing Journal, 2004, 27(6): 547–556.
    [4] DYER M R. Further tests on the fissuring of clay fill at the thorngumbald Flood Embankment[C]// Proceedings of the International Symposium Advanced Experimental Unsaturated Soil Mechanics, Experus 05, London, 2005: 501–504.
    [5] PERON H, HUECKEL T, LALOUI L, et al. Fundamentals of desiccation cracking of fine-grained soils: experimental characterization and mechanisms identification[J]. Canadian Geotechnical Journal, 2009, 46: 1177–1201.
    [6] KATHA B R. Shrinkage strain characterization of expansive soils using digital imaging technology[D]. Arlington: The University of Texas at Arlington, 2002.
    [7] BRAUDEAU E, COSTANTINI J M, BELLIER G, et al. New device and method for soil shrinkage curve measurement and characterization[J]. Soil Sci Soc Am J, 1999, 63: 525–535.
    [8] HEAD K H. Manual of soil laboratory testing, volume 1: soil classification and compaction tests[M]. London: Pentech Press, 1980.
    [9] MONNIER G, STENGEL P, FIES J C. Une méthode de mesure la densité apparente de petits agglomérats terreux. Application à l'analyse de systèmes de porosité du sol[J]. Ann. Agron., 1973, 24: 533–545. (MONNIER G, STENGEL P, FIES J C. A method of measuring the bulk density of small soil conglomerates - Application to the analysis of porous soil systems[J]. Agronomy Journal, 1973, 24: 533–545. (in French))
    [10] SIBLEY J W, WILLIAMS D J. A procedure for determining volumetric shrinkage of an unsaturated soil[J]. Geotech Test J, 1989, 12: 181–187.
    [11] ASTM standards. Test method for shrinkage factors of soils by the mercury method—D427-04[S]. American Society for Testing and Materials, 1997.
    [12] BRASHER B R, FRANZMEIER D P, VALASSIs V, et al. Use of saran resin to coat natural soil clods for bulk density and water retention measurements[J]. Soil Sci, 1966, 101: 108.
    [13] PELLISSIER J P. The toluene and wax-freezing method of determining volumetric free swell[J]. Geotech Test J, 1991, 14: 309–314.
    [14] 唐朝生, 崔玉军, TANG A M, 等. 土体干燥过程中的体积收缩变形特征[J]. 岩土工程学报, 2011, 33(8): 1271–1279. (TANG Chao-sheng, CUI Yu-jun, TANG Anh-minh, et al. Volumetric shrinkage characteristics of soil during drying[J]. Chinese Journal of Geotechnical Engineering, 2011, 33(8): 1271–1279. (in Chinese))
    [15] PERON H, HUECKEL T, LALOUI L. An improved volume measurement for determining soil water retention curve[J]. Geotechnical Testing Journal, 2007, 30(1): 1–7.
    [16] 唐朝生, 施 斌, 刘 春, 等. 黏性土在不同温度下干缩裂缝的发展规律及形态学定量分析[J]. 岩土工程学报, 2007, 29(5): 743–749. (TANG Chao-sheng, SHI Bin, LIU Chun, et al. Developing law and morphological analysis of shrinkage cracks of clay soil at different temperature[J]. Chinese Journal of Geotechnical Engineering, 2007, 29(5): 743–749. (in Chinese))
    [17] 唐朝生, 施 斌, 刘 春, 等. 影响黏性土表面干缩裂缝结构形态的因素及定量分析[J]. 水利学报, 2007, 38(10): 1186–1193. (TANG Chao-sheng, SHI Bin, LIU Chun, et al. Factors affecting of the surface shrinkage cracks’ structure and morphology of clay soil and quantitative analysis[J]. Journal of Hydraulic Engineering, 2007, 38(10): 1186–1193. (in Chinese))
    [18] TANG C, SHI B, LIU C, et al. Influencing factors of geometrical structure of surface shrinkage cracks in clayey soils[J]. Engineering Geology, 2008, 101(3-4): 204–217.
    [19] CHERTKOV V Y. The physical effects of an intra-aggregate structure on soil shrinkage[J]. Geoderma, 2008, 146: 14–156.
    [20] ROMERO E, SIMMS P H. Microstructure investigation in unsaturated soils: A review with special attention to contribution of mercury intrusion porosimetry and environmental scanning electron microscopy[J]. Geotech Geol Eng, 2008, 26(6): 705–727.
    [21] DELAGE P, AUDIGUIER M, CUI YJ, et al. Microstructure of a compacted silt[J]. Canadian Geotechnical Journal, 1996, 33: 150–158.
    [22] CUI Y J, LOISEAU C, DELAGE P. Microstructure changes of a confined swelling soil due to suction controlled hydration[C]// Proceedings of 3rd International Conference on Unsaturated Soils, Recife, Brazil. Lisse: Balkema Publishers, 2002: 593–598.
    [23] MONTES H G, DUPLAY J, MARTINEZ L, et al. Structural modifications of Callovo-Oxfordian argillite under hydration dehydration conditions[J]. Applied Clay Science, 2004, 25(3-4): 187–194.
    [24] BRONSWIJK J J B. Modeling of water balance, cracking and subsidence of clay soils[J]. J Hydrol (Amsterdam), 1988, 97: 199–212.
    [25] CHERTKOV V Y, RAVINA I, ZADOENKO V. An approach for estimating the shrinkage geometry factor at a moisture content[J]. Soil Science Society of American Journal, 2004, 68: 1807–1817.
    [26] CORNELIS W M, CORLUY J, MEDINA H, et al. A simplified parametric model to describe the magnitude and geometry of soil shrinkage[J]. Eur J Soil Sci, 2006, 57: 258–268.
    [27] BOIVIN P, GARNIER P, TESSIER D. Relationship between clay content, clay type, and shrinkage properties of soil sample[J]. Soil Science Society of American Journal, 2004, 68: 1154–1153.
    [28] GIRáLDEZ J V, SPOSITO G, DELGADO C. A general soil volume change equation: I. The two-parameter model[J]. Soil Sci Soc Am J, 1983, 47: 419–422.
    [29] MCGARRY D, MALAFANT K W J. The analysis of volume change in unconfined units of soil[J]. Soil Sci Soc Am J, 1987, 51: 290–297.
    [30] KIM D J, VEREECKEN H, FEYEN J, Boels D, Bronswijk JJB. On the characterization of properties of an unripe marine clay soil. 1. Shrinkage processes of an unripe marine clay soil in relation to physical ripening[J]. Soil Sci, 1992, 153: 471–481.
    [31] TARIQ A, DURNFORD D S. Analytical volume change model for swelling clay soils[J]. Soil Sci Soc Am J, 1993, 57: 1183–1187.
    [32] OLSEN P A, HAUGEN L E. New model of the shrinkage characteristic applied to some Norwegian soils[J]. Geoderma, 1998, 83: 67–81.
    [33] CHERTKOV V Y. Modelling the shrinkage curve of soil clay pastes[J]. Geoderma, 2003, 112: 71–95.
    [34] GROENEVELT P H, GRANT C D. Curvature of shrinkage lines in relation to the consistency and structure of a Norwegian clay soil[J]. Geoderma, 2002, 106: 235–245.
计量
  • 文章访问数: 
  • HTML全文浏览量:  0
  • PDF下载量: 
  • 被引次数: 0
出版历程
  • 收稿日期:  2011-07-14
  • 发布日期:  2012-07-24

目录

    /

    返回文章
    返回