基于单目深度估计与实例分割的岩石裂隙三维表征

    3D Rock Fracture Characterization Based on Monocular Depth Estimation and Instance Segmentation

    • 摘要: 针对现有岩石裂隙测量方法中的效率低、风险高、适应性差等问题,本文提出一种基于单目深度估计与实例分割的岩石裂隙三维表征方法,旨在通过普通单目相机实现对岩石裂隙的非接触式测量,自动化提取其长度、宽度及产状等三维几何参数。采用改进的密集预测变换器(DPT, Dense Prediction Transformer)单目深度估计模型对单张岩石图像进行深度预测,生成高分辨率深度图并重建三维点云。结合掩码区域卷积神经网络(Mask R-CNN, Mask Region-based Convolutional Neural Network)实例分割模型实现裂隙区域的像素级精准提取,实现裂隙点云的分割与提取。基于提取的裂隙点云,本文设计了一套三维参数提取算法:1) 基于中轴变换骨架提取与欧氏距离累加的裂隙长度计算方法。2) 结合局部主方向截面投影与双向最近邻搜索的裂隙宽度计算方法。3) 基于骨架迹线最小二乘拟合的裂隙产状计算方法。实验结果表明所提方法能够有效提取裂隙三维特征参数:裂隙长度与宽度提取的平均相对误差分别为8.73%和10.29%,倾角与倾向提取的平均绝对误差分别为3.92°和7.92°,满足工程实际需求。该方法为复杂工程环境下岩石裂隙的快速、安全、自动化三维数字化表征提供了技术参考。

       

      Abstract: Addressing inefficiency, safety hazards, and environmental adaptability limitations in existing rock fracture measurement methods, this paper proposes a 3D characterization method for rock fractures integrating monocular depth estimation with instance segmentation. The approach achieves non-contact measurement and automatic extraction of 3D geometric parameters (length, width, orientation) using standard monocular cameras. An enhanced Dense Prediction Transformer (DPT) generates high-resolution depth maps and reconstructs 3D point clouds from single images. Mask R-CNN performs pixel-accurate fracture segmentation to isolate fracture point clouds. Based on extracted point clouds, this work develops a 3D parameter quantification algorithm: (1) Fracture length calculation via medial-axis-transform skeleton extraction and Euclidean distance accumulation; (2) Width measurement combining local principal-direction projection with bidirectional nearest-neighbor search; (3) Orientation determination through least-squares fitting of skeleton traces. Experimental results validate the method's efficacy: Average relative errors for length/width are 8.73%/10.29%; mean absolute errors for dip/direction are 3.92°/7.92°, meeting engineering accuracy requirements. The method provides reliable technical support for rapid, safe, and automated 3D digital characterization in complex engineering environments.

       

    /

    返回文章
    返回