• 全国中文核心期刊
  • 中国科技核心期刊
  • 美国工程索引(EI)收录期刊
  • Scopus数据库收录期刊

钢管锚锭板桩全回收基坑支护技术及模型试验研究

李鹏, 刘强, 杨俊杰, 吴刚

李鹏, 刘强, 杨俊杰, 吴刚. 钢管锚锭板桩全回收基坑支护技术及模型试验研究[J]. 岩土工程学报, 2024, 46(S1): 228-232. DOI: 10.11779/CJGE2024S10045
引用本文: 李鹏, 刘强, 杨俊杰, 吴刚. 钢管锚锭板桩全回收基坑支护技术及模型试验研究[J]. 岩土工程学报, 2024, 46(S1): 228-232. DOI: 10.11779/CJGE2024S10045
LI Peng, LIU Qiang, YANG Junjie, WU Gang. Fully recoverable retaining technology of sheet piles anchored by steel pipe piles for excavations and model tests[J]. Chinese Journal of Geotechnical Engineering, 2024, 46(S1): 228-232. DOI: 10.11779/CJGE2024S10045
Citation: LI Peng, LIU Qiang, YANG Junjie, WU Gang. Fully recoverable retaining technology of sheet piles anchored by steel pipe piles for excavations and model tests[J]. Chinese Journal of Geotechnical Engineering, 2024, 46(S1): 228-232. DOI: 10.11779/CJGE2024S10045

钢管锚锭板桩全回收基坑支护技术及模型试验研究  English Version

基金项目: 

国家自然科学基金面上项目 52078474

国家自然科学基金面上项目 51779235

国家自然科学基金面上项目 52378380

详细信息
    作者简介:

    李鹏(1977—),男,博士研究生,正高级工程师,主要从事岩土工程研究。E-mail: 12159565@qq.com

    通讯作者:

    刘强, E-mail: sunnyseasea@163.com

  • 中图分类号: TU447

Fully recoverable retaining technology of sheet piles anchored by steel pipe piles for excavations and model tests

  • 摘要: 针对基坑工程中支护构件浪费、环境污染及高碳排放等问题,提出了一种钢管锚锭板桩全回收基坑支护技术并介绍了支护体系构成。实施了钢管锚锭板桩的大型缩尺模型试验,通过摄影测量技术(DIC和DPA)对模型板桩和管桩在开挖过程中的位移进行观测。试验结果表明:管桩的锚拉作用对结构位移具有显著限制,增加单位宽度的管桩数量可有效减小位移,管桩顶部的最大位移与开挖深度呈双曲线关系。模型地基的变形破坏形式与管桩至板桩的间距有关,随间距增加,破坏形态从管桩与板桩同时倾斜,到沿管桩位置滑裂,再到沿与板桩距离开挖深度约1.5倍的地表滑裂。开挖过程中管桩与板桩的桩顶变形基本协调一致。
    Abstract: In light of the issues such as inefficiency of retaining component utilization, environmental contamination and excessive carbon emissions associated with excavation engineering, a fully recoverable retaining technology of sheet piles anchored by steel pipe piles is proposed for excavations, and the composition of the retaining system is introduced. A large-scale scale model test is conducted, and the displacements of the sheet piles and pipe piles during excavation are quantitatively measured using the photogrammetry such as DIC and DPA. The test results indicate that the anchorage action of the pipe piles imposes a significant constraint on the structural displacement, and the displacement can be effectively mitigated by increasing the number of pipe piles per unit width. The displacement at the top of the pipe pile exhibits a hyperbolic relationship with the excavation depth. The deformation and failure mechanism of the model foundation are associated with the distance between the pipe piles and the sheet piles. As the distance increases, the failure mechanism varies from the concurrent inclination of the pipe piles and sheet piles to the slippage along the pipe piles, and subsequently to the slippage along the surface area extending about 1.5 times the excavation depth from the sheet piles. The deformations at the top of both the pipe piles and the sheet pile remain consistent throughout the excavation process.
  • 图  1   钢管锚锭板桩全回收基坑支护体系

    Figure  1.   Fully recoverable retaining system of sheet piles anchored by steel pipe piles for deep excavations

    图  2   支护体系构件

    Figure  2.   Component parts of retaining system

    图  3   模型箱与加载系统

    Figure  3.   Model box and loading system

    图  4   DIC系统和DPA设备

    Figure  4.   DIC system and DPA facilities

    图  5   A1、A4组及A2、A3组模型试验布置图

    Figure  5.   Layout of model tests on case A1, A4 A2 and A3

    图  6   B1和B2组模型试验布置图

    Figure  6.   Layout of model tests on case B1 and B2

    图  7   模型地基在基坑顶面的破坏状态

    Figure  7.   Failure states of model foundation at top of excavation

    图  8   土压力变化规律

    Figure  8.   Variation of earth pressure

    图  9   管桩顶部位移实测值

    Figure  9.   Measurement of displacement at top of pipe pile

    图  10   板桩顶部位移实测值

    Figure  10.   Measurement of displacement at top of sheet pile

    图  11   管桩与板桩的位移比较

    Figure  11.   Comparison of displacements between pipe piles and sheet piles

    表  1   试验方案

    Table  1   Test schemes

    试验编号 单管 双管
    A1 A2 A3 A4 B1 B2
    管桩与板桩间距L/mm 100 300 500 1000 300 500
    下载: 导出CSV
  • [1] 龚晓南. 深基坑工程设计施工手册[M]. 2版. 北京: 中国建筑工业出版社, 2018.

    GONG Xiaonan. Manual for Design and Construction of Deep Foundation Pit Engineering[M]. 2nd ed. Beijing: China Architecture & Building Press, 2018. (in Chinese)

    [2] 李连祥, 赵仕磊, 张菊连, 等. 全回收基坑支护技术发展及思考展望[J/OL]. 工业建筑, https://doi.org/10.13204/j.gyjzG23022605.

    LI Lianxiang, ZHAO Shilei, ZHANG Julian, et al. Development and thinking prospect of full recycled retaining and protection of foundation excavations engineering[J/OL]. Industrial Construction, https://doi.org/10.13204/j.gyjzG23022605. (in Chinese).

    [3] 龚晓南, 俞建霖. 可回收锚杆技术发展与展望[J]. 土木工程学报, 2021, 54(10): 90-96. https://www.cnki.com.cn/Article/CJFDTOTAL-TMGC202110011.htm

    GONG Xiaonan, YU Jianlin. Development and prospect of removable anchor technology[J]. China Civil Engineering Journal, 2021, 54(10): 90-96. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-TMGC202110011.htm

    [4] 付文光, 邹俊峰, 黄凯. 可回收锚杆技术研究综述[J]. 地下空间与工程学报, 2021, 17(增刊1): 512-522, 528. https://www.cnki.com.cn/Article/CJFDTOTAL-BASE2021S1071.htm

    FU Wenguang, ZOU Junfeng, HUANG Kai. Overview of research on recycled anchor technology[J]. Chinese Journal of Underground Space and Engineering, 2021, 17(S1): 512-522, 528. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-BASE2021S1071.htm

    [5] 王卫东, 丁文其, 杨秀仁, 等. 基坑工程与地下工程: 高效节能、环境低影响及可持续发展新技术[J]. 土木工程学报, 2020, 53(7): 78-98. https://www.cnki.com.cn/Article/CJFDTOTAL-TMGC202007009.htm

    WANG Weidong, DING Wenqi, YANG Xiuren, et al. Deep excavation engineering and underground engineering—new techniques of high-efficiency and energy-saving, low environmental impact, and sustainable development[J]. China Civil Engineering Journal, 2020, 53(7): 78-98. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-TMGC202007009.htm

    [6] 张超哲, 刘松玉. 地下空间预制装配式结构研究现状综述[J]. 应用基础与工程科学学报, 2022, 30(1): 236-245. https://www.cnki.com.cn/Article/CJFDTOTAL-YJGX202201019.htm

    ZHANG Chaozhe, LIU Songyu. A review on the research of prefabricated structures in underground space[J]. Journal of Basic Science and Engineering, 2022, 30(1): 236-245. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YJGX202201019.htm

    [7] 王锐松, 郭成超, 林沛元, 等. 富水粉土基坑装配式可回收支护开挖响应分析[J]. 岩土力学, 2023, 44(3): 843-853. https://www.cnki.com.cn/Article/CJFDTOTAL-YTLX202303020.htm

    WANG Ruisong, GUO Chengchao, LIN Peiyuan, et al. Excavation response analysis of prefabricated recyclable support structure for water-rich silt foundation pit[J]. Rock and Soil Mechanics, 2023, 44(3): 843-853. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YTLX202303020.htm

    [8] 周盛全, 戴晨, 冯绍童, 等. 可回收桩锚支护基坑模型试验及数值模拟研究[J]. 武汉理工大学学报, 2023, 45(11): 92-98. https://www.cnki.com.cn/Article/CJFDTOTAL-WHGY202311014.htm

    ZHOU Shengquan, DAI Chen, FENG Shaotong, et al. Model test and numerical simulation of recoverable Pile-anchor[J]. Journal of Wuhan University of Technology, 2023, 45(11): 92-98. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-WHGY202311014.htm

图(11)  /  表(1)
计量
  • 文章访问数:  0
  • HTML全文浏览量:  0
  • PDF下载量:  0
  • 被引次数: 0
出版历程
  • 收稿日期:  2024-04-30
  • 刊出日期:  2024-07-31

目录

    /

    返回文章
    返回